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ABSTRACT 
Though statistical analyses are centered on research questions 
and hypotheses, current statistical analysis tools are not. Users 
must first translate their hypotheses into specific statistical 
tests and then perform API calls with functions and parame-
ters. To do so accurately requires that users have statistical 
expertise. To lower this barrier to valid, replicable statistical 
analysis, we introduce Tea, a high-level declarative language 
and runtime system. In Tea, users express their study de-
sign, any parametric assumptions, and their hypotheses. Tea 
compiles these high-level specifications into a constraint satis-
faction problem that determines the set of valid statistical tests 
and then executes them to test the hypothesis. We evaluate 
Tea using a suite of statistical analyses drawn from popular 
tutorials. We show that Tea generally matches the choices of 
experts while automatically switching to non-parametric tests 
when parametric assumptions are not met. We simulate the 
effect of mistakes made by non-expert users and show that 
Tea automatically avoids both false negatives and false pos-
itives that could be produced by the application of incorrect 
statistical tests. 
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INTRODUCTION 
The enormous variety of modern quantitative methods 

leaves researchers with the nontrivial task of matching 
analysis and design to the research question. 

- Ronald Fisher [16] 
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Since the development of modern statistical methods (e.g., 
Student’s t-test, ANOVA, etc.), statisticians have acknowl-
edged the difficulty of identifying which statistical tests people 
should use to answer their specific research questions. Almost 
a century later, choosing appropriate statistical tests for eval-
uating a hypothesis remains a challenge. As a consequence, 
errors in statistical analyses are common [26], especially given 
that data analysis has become a common task for people with 
little to no statistical expertise. 

A wide variety of tools (such as SPSS [55], SAS [54], and 
JMP [52]), programming languages (e.g., R [53]), and libraries 
(including numpy [40], scipy [23], and statsmodels [45]), en-
able people to perform specific statistical tests, but they do 
not address the fundamental problem that users may not know 
which statistical test to perform and how to verify that specific 
assumptions about their data hold. 

In fact, all of these tools place the burden of valid, replicable 
statistical analyses on the user and demand deep knowledge 
of statistics. Users not only have to identify their research 
questions, hypotheses, and domain assumptions, but also must 
select statistical tests for their hypotheses (e.g., Student’s t-test 
or one-way ANOVA). For each statistical test, users must be 
aware of the statistical assumptions each test makes about the 
data (e.g., normality or equal variance between groups) and 
how to check for them, which requires additional statistical 
tests (e.g., Levene’s test for equal variance), which themselves 
may demand further assumptions about the data. This cog-
nitively demanding process requires significant knowledge 
about statistical tests and their preconditions as well as the 
ability to perform the tests and verify their preconditions. This 
process can easily lead to mistakes. 

This paper presents Tea1, a high-level declarative language 
for automating statistical test selection and execution that ab-
stracts the details of statistical analysis from the users. Tea 
captures users’ hypotheses and domain knowledge, translates 
this information into a constraint satisfaction problem, iden-
tifies all valid statistical tests to evaluate a hypothesis, and 
executes the tests. Tea’s higher-level, declarative nature aims 
to lower the barrier to valid, replicable analyses. 

1named after Fisher’s “Lady Tasting Tea” experiment [16] 
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We have designed Tea to integrate directly into common data 
analysis workflows for users who have minimal programming 
experience. Tea is implemented as an open-source Python 
library, so programmers can use Tea wherever they use Python, 
including within Python notebooks. 

In addition, Tea is flexible. Its abstraction of the analysis 
process and use of a constraint solver to select tests is designed 
to support its extension to emerging statistical methods, such 
as Bayesian analysis. Currently, Tea supports frequentist Null 
Hypothesis Significance Testing (NHST). 

The paper makes the following contributions: 

• Tea, a novel domain-specific language (DSL) for automati-
cally selecting and executing statistical analyses based on 
users’ hypotheses and domain knowledge (Section 5), 

• the Tea runtime system, which formulates statistical test 
selection as a maximum constraint satisfaction problem 
(Section 6), and 

• an initial evaluation showing that Tea can express and exe-
cute common NHST statistical tests (Section 7). 

We start with a usage scenario that provides an overview of 
Tea (Section 2). We discuss the concerns about statistics in 
the HCI community that shaped Tea’s design (Section 3), the 
implementation of Tea’s programming language (Section 5), 
the implementation of Tea’s runtime system (Section 6), and 
the evaluation of Tea as a whole (Section 7). We discuss 
limitations and future work, differentiate Tea from prior work, 
and conclude with information on how to use Tea. 

USAGE SCENARIO 
This section describes how an analyst who has no statistical 
background can use Tea to answer their research questions. 
We use as an example analyst a historical criminologist who 
wants to determine how imprisonment differed across regions 
of the US in 19602. Figure 1 shows the Tea code for this 
example. 

The analyst specifies the data file’s path in Tea. Tea handles 
loading and storing the data set for the duration of the analysis 
session. The analyst does not have to worry about reformatting 
the data during the analysis process in any way. 

The analyst asks if the probability of imprisonment was higher 
in southern states than in non-southern states. The analyst 
identifies two variables that could help them answer this ques-
tion: the probability of imprisonment (‘Prob’) and geographic 
location (‘So’). Using Tea, the analyst defines the geographic 
location as a dichotomous nominal variable where ‘1’ indi-
cates a southern state and ‘0’ indicates a non-southern state, 
and indicates that the probability of imprisonment is a numeric 
data type (ratio) with a range between 0 and 1. 

The analyst then specifies their study design, defining the study 
type to be “observational study” (rather than “experimental 
study”) and defining the contributor (independent) variable 

2The example is taken from Ehrlich [13] and Vandaele [47]. The 
data set comes as part of the MASS package in R. 

Figure 1: Sample Tea program. The specification outlines 
an experiment to analyze the relationship between geographic 
location (‘So’) and probability of imprisonment (‘Prob’) in 
a common USCrime data set [49, 24]. See Section 2 for an 
explanation of the code. Tea programs specify 1) data, 2) 
variables, 3) study design, 4) assumptions, and 5) hypotheses. 

to be the geographic location and the outcome (dependent) 
variable to be the probability of imprisonment. 

Based on their prior research, the analyst knows that the prob-
ability of imprisonment in southern and non-southern states 
is normally distributed. The analyst provides an assumptions 
clause to Tea in which they specify this domain knowledge. 
They also specify an acceptable Type I error rate (probability 
of finding a false positive result), more colloquially known 
as the ‘significance threshold’ (α = .05) that is acceptable 
in criminology. If the analyst does not have assumptions or 
forgets to provide assumptions, Tea will use the default of 
α = .05. 

The analyst hypothesizes that southern states will have a higher 
probability of imprisonment than non-southern states. The 
analyst directly expresses this hypothesis in Tea. Note that 
at no point does the analyst indicate which statistical tests 
should be performed. 

From this point on, Tea operates entirely automatically. When 
the analyst runs their Tea program, Tea checks properties of 
the data and finds that the Student’s t-test is appropriate. Tea 
executes the Student’s t-test and non-parametric alternatives, 
such as the Mann-Whitney U test, which provide alternative, 
consistent results. 

Tea generates a table of results from executing the tests, or-
dered by their power (i.e., results from the parametric t-test 
will be listed first given that it has higher power than the 
non-parametric equivalent). Based on this output, the analyst 
concludes that their hypothesis—that the probability of im-



prisonment was higher in southern states than in non-southern 
states in 1960—is supported. The results from alternative 
statistical tests support this conclusion, so the analyst can be 
confident in their assessment. 

The analyst can now share their Tea program with colleagues. 
Other researchers can easily see what assumptions the analyst 
made and what the intended hypothesis was (since these are 
explicitly stated in the Tea program), and reproduce the exact 
results using Tea. 

DESIGN CONSIDERATIONS 
In designing Tea’s language and runtime system, we con-
sidered best practices for conducting statistical analyses and 
derived our own insights on improving the interaction between 
users and statistical tools. 

We identified five key recommendations for statistical analysis 
from Cairns’ report on common statistical errors in HCI [6], 
which echoes many concerns articulated by Wilkinson [56], 
and the American Psychological Association’s Task Force on 
Statistical Inference [1]: 

• Users should make explicit their assumptions about the 
data [1]. 

• Users should verify and report the results from checking 
assumptions statistical tests make about the data and vari-
ables [6, 1]. 

• Users should account for multiple comparisons [6, 1]. 

• When possible, users should consider alternative analyses 
that test their hypothesis and select the simplest one [1]. 

• Users should contextualize results from statistical tests us-
ing effect sizes and confidence intervals [1]. 

An additional practice we wanted to simplify in Tea was repro-
ducing analyses. Table 1 shows how Tea compares to current 
tools in supporting these best practices. 

Based on these guidelines, we identified two key interaction 
principles for Tea: 

1. Users should be able to express their expertise, assumptions, 
and intentions for analysis. Users have domain knowledge 
and goals that cannot be expressed with the low-level API 
calls to the specific statistical tests required by the majority 
of current tools. A higher level of abstraction that focuses 
on the goals and context of analysis is likely to appeal to 
users who may not have statistical expertise (Section 5). 

2. Users should not be burdened with statistical details to 
conduct valid analyses. Currently, users must not only 
remember their hypotheses but also identify possibly ap-
propriate tests and manually check the preconditions for all 
the tests. Simplifying the user’s procedure by automating 
the test selection process can help reduce cognitive demand 
(Section 6). 

While there are calls to incorporate other methods of statis-
tical analysis [27, 26], Null Hypothesis Significance Testing 
(NHST) remains the norm in HCI and other disciplines. There-
fore, Tea currently implements a module for NHST with the 

tests found to be most common by [50] (see subsection 6.6 for 
a list of tests). We believe that Tea’s abstraction and modular-
ity will enable the incorporation of other statistical analysis 
approaches as they move into the mainstream. 

OVERVIEW OF TEA 
Tea consists of a high-level programming language and a 
runtime system. There are three key steps to compiling a 
Tea program from user specifications to executing statistical 
analyses: 

1. Check for completeness and syntax. Tea first checks that 
a user’s program specifies a data set, variable declarations, 
study design description, a set of assumptions, and hypothe-
ses using the correct syntax. For pre-registration (further 
discussed in Section 9), the data set can be empty (with only 
column names). If there are any syntax errors or missing 
parts, Tea will issue an error and stop execution. 

2. Check for consistent, well-formed hypotheses. Using the 
variable declarations, Tea then checks that the hypotheses 
the user states are consistent with variable data types. For 
instance, Tea would issue an error and halt execution if 
a nominal variable was hypothesized to have a positive 
relationship with another nominal variable. If the nominal 
variables have categories given by numbers (e.g., a variable 
for education where ‘1’ stands for ‘High School’, ‘2’ for 
‘College’, etc. ), a linear relationship would be possible 
to compute by treating the categories as raw continuous 
values. However, treating the numbers as values is incorrect 
and the results misleading because the numbers represent 
discrete categories, not continuous values. Tea avoids such 
mistakes. 

3. Inspect data properties and infer valid statistical tests. 
Once Tea’s compiler verifies that a Tea program is com-
plete, syntactically correct, and consistent, Tea’s runtime 
system inspects the data to verify properties about it and 
find a set of valid statistical tests. The higher-level Tea 
program is then compiled to logical constraints, which is 
further discussed in Section 6. 

TEA’S PROGRAMMING LANGUAGE 
Tea is a domain-specific language embedded in Python. It 
takes advantage of existing Python data structures (e.g., 
classes, dictionaries, and enums). We chose Python because 
of its widespread adoption in data science. Tea is itself imple-
mented as a Python library3. 

A key challenge in describing studies is determining the level 
of granularity necessary to produce an accurate analysis. In 
Tea programs, users describe their studies in five ways: (1) 
providing a data set, (2) describing the variables of interest 
in that data set, (3) specifying their study design, (4) stating 
their assumptions about the variables, and (5) formulating 
hypotheses about the relationships between variables. 

3Tea is open-source and available for download on pip, a common 
Python package manager. 



Table 1: Comparison of Tea to other tools. Despite the published best practices for statistical analyses, most tools do not help 
users select appropriate tests. Tea not only addresses the best practices but also supports reproducing analyses. 

Best practices SAS SPSS JMP R Statsplorer [50] Tea 
Explicit statement of user assumptions — — — — — X 

Automatic verification of test preconditions — — sometimes sometimes X X 
Automatic accounting of multiple comparisons — — 

Surface alternative analyses — — 
Contextualize results X sometimes 

Easy to reproduce analysis X X 

Figure 2: Part of Tea’s output. The output is a result of 
running the sample program in Figure 1. Tea outputs the data 
properties that led Tea to select the statistical test as well as 
results from executing the test, effect size calculations, the null 
hypothesis tested, and the interpretation of the results, which 
can be included in publications with minor editing. 

Data 
Data is required for executing statistical analyses. One chal-
lenge in managing data for analysis is minimizing both dupli-
cated data and user intervention. 

To reduce the need for user intervention for data manipulation, 
Tea requires the data to be a CSV in long format. CSVs 
are a common output format for data storage and cleaning 
tools. Long format (sometimes called “tidy data” [51]) is a 
denormalized format that is widely used for collecting and 
storing data, especially for within-subjects studies. 

Unlike R and Python libraries such as numpy [40], Tea only 
requires one instance of the data. Users do not have to du-
plicate the data or subsets of it for analyses that require the 
data to be in slightly different forms. Minimizing data duplica-
tion or segmentation is also important to avoid user confusion 
about where some data exist or which subsets of data pertain 
to specific statistical tests. 

— — X X 
— — — X 
X sometimes X X 
— X — X 

Optionally, users can also indicate a column in the data set 
that acts as a relational (or primary) key, or an attribute that 
uniquely identifies rows of data. For example, this key could 
be a participant identification number in a behavioral experi-
ment. A key is useful for verifying a study design, described 
below. Without a key, Tea’s default is that all rows in the data 
set comprise independent observations (that is, all variables 
are between subjects). 

For pre-registration where there is no data, a CSV with only 
column names is necessary. Using Tea for pre-registration is 
discussed further in Section 9. 

Variables 
Variables represent columns of interest in the data set. Vari-
ables have a name, a data type (nominal, ordinal, interval, or 
ratio), and, when appropriate, valid categories. Users (nat-
urally) refer to variables through a Tea program using their 
names. Only nominal and ordinal variables have a list of pos-
sible categories. For ordinal variables, the categories are also 
ordered from left to right. 

Variables encapsulate queries. The queries represent the in-
dex of the variable’s column in the original data set and any 
filtering operations applied to the variable. For instance, it is 
common to filter by category for nominal variables. 

Study Design 
Three aspects of study design are important for conducting 
statistical analyses: (1) the type of study (observational study 
vs. randomized experiment), (2) the independent and depen-
dent variables, and (3) the number of observations per par-
ticipant (e.g., between-subjects variables vs. within-subjects 
variables). 

For semantic precision, Tea uses different terms for indepen-
dent and dependent variables for observational studies and 
experiments. In experiments, variables are described as ei-
ther “independent” or “dependent” variables. In observational 
studies, variables are either “contributor” (independent) or 
“outcome” (dependent) variables. 

Assumptions 
Users’ assumptions based on domain knowledge are critical 
for conducting and contextualizing studies and analyses. Of-
ten, users’ assumptions are particular to variables and specific 
properties (e.g., equal variances across different groups). Cur-
rent tools generally do not require that users encode these 
assumptions, leaving them implicit. 

Tea takes the opposite approach to contextualize and increase 
the transparency of analyses. It requires that users be explicit 
about assumptions and statistical properties pertaining to the 



Figure 3: Tea program and its mode-dependent executions. a) Tea program that aims to determine if two contributor variables, 
‘Illiteracy‘ and ‘HS Grad’ that may predict a third outcome variable ‘Life Exp’, are correlated. The user asserts that ‘Illiteracy’ is 
normally distributed. b) By default, Tea executes programs in the strict mode. c) Warning that Tea disagrees with the user and will 
override the user’s assertion that ‘Illiteracy’ is normally distributed in the strict mode. d) Results without the parametric test since 
Tea overrides user’s assertion. e) A single line change can modify Tea to execute a program in relaxed mode. f) Warning that Tea 
cannot verify normality for ‘Illiteracy’ but will defer to user’s assertion. g) Results with the parametric test since Tea proceeds as 
if ‘Illiteracy’ was normally distributed. 

analysis as a whole (e.g., acceptable Type I error rate/signifi-
cance threshold) and the data. 

Tea supports two modes for treating user assumptions: strict 
and relaxed. In both modes, Tea verifies all user assumptions 
and issues warnings for assumptions that statistical testing 
does not verify. In the strict mode, Tea overrides user as-
sumptions when selecting valid statistical tests. In the relaxed 
mode, Tea defers to user assumptions and proceeds as if the 
assumptions verified even if they did not. The strict mode is 
the default, but users can specify the relaxed mode. Figure 3 
shows the two modes and the different warnings and output 
they generate. 

If users also know that a data transformation (i.e., log trans-
formation) applies to a variable, they can express this as an 
assumption. Data transformations are not properties to be 
verified but rather treatments of data that are applied during 
assumption verification, statistical test selection, and test ex-
ecution, which is why they are included in the assumptions 

clause. The next section discusses the verification process for 
assumptions in greater detail. 

Hypotheses 
Hypotheses drive the statistical analysis process. Users often 
have hypotheses that are technically alternative hypotheses. 

Tea focuses on capturing users’ alternative hypotheses about 
the relationship between two or more variables. Tea uses the 
alternate hypothesis to conduct either a two-sided or one-sided 
statistical test. By default, Tea uses the null hypothesis that 
there is no relationship between variables. 

Figure 4 exemplifies the range of hypotheses Tea supports. 

TEA’S RUNTIME SYSTEM 
Tea compiles programs into logical constraints about the data 
and variables, which it resolves using a constraint solver. A 
significant benefit of using a constraint solver is extensibility. 
Adding new statistical tests does not require modifying the 
core of Tea’s runtime system. Instead, defining a new test 



Figure 4: Hypotheses that users can express in Tea. 
requires expressing a single new logical relationship between 
a test and its preconditions. 

At runtime, Tea invokes a solver that operates on the logical 
constraints it computes to produce a list of valid statistical 
tests to conduct. This process presents three key technical 
challenges: (1) incorporating statistical knowledge as con-
straints, (2) expressing user assumptions as constraints, and 
(3) recursively selecting statistical tests to verify preconditions 
of other statistical tests. 

SMT Solver 
As its constraint solver, Tea uses Z3 [10], a Satisfiability Mod-
ulo Theory (SMT) solver. 

Satisfiability is the process of finding an assignment to vari-
ables that makes a logical formula true. For example, given 
the logical rules 0 < x < 100 and y < x, {x = 1, y = 0}, 
{x = 10,y = 5}, and {x = 99, y = −100} would all be valid 
assignments that satisfy the rules. SMT solvers determine the 
satisfiability of logical formulas, which can encode boolean, in-
teger, real number, and uninterpreted function constraints over 
variables. SMT solvers can also be used to encode constraint 
systems, as we use them here. A wide variety of applications 
ranging from the synthesis of novel interface designs [46], the 
verification of website accessibility [41], and the synthesis of 
data structures [33] employ SMT solvers. 
Logical Encodings 
The first challenge of framing statistical test selection as a con-
straint satisfaction problem is defining a logical formulation 
of statistical knowledge. 

Tea encodes the applicability of a statistical test based on its 
preconditions. A statistical test is applicable if and only if all 
of its preconditions (which are properties about variables) hold. 
We derived preconditions for tests from an online HCI and 
statistics course [29], a statistics textbook [15], and publicly 
available data science resources from universities [4, 32]. 

Tea represents each precondition for a statistical test as an 
uninterpreted function representing a property over one or 
more variables. Each property is assigned true if the property 
holds for the variable/s; similarly, if the property does not hold, 
the property function is assigned false. 

Tea also encodes statistical knowledge about variable types and 
properties that are essential to statistical analysis as axioms, 
such as the constraint that only a continuous variable can be 
normally distributed. 
Algorithm 
Tea frames the problem of finding a set of valid statistical tests 
as a maximum satisfiability (MaxSAT) problem that is seeded 
with user assumptions. 

First, Tea translates each user assumption about a data property 
into an axiom about a property and variable. As described 
in subsection 5.4, user assumptions about properties but not 
data transformations are always checked. In the strict mode, 
Tea overrides any user assumptions it does not find to hold, 
creating an axiom that a property is false. In the relaxed 
mode, Tea defers to user assumptions, creating axioms that a 
property is true. For any user assumptions that do not pass 
statistical testing, Tea warns the user and explains how it will 
proceed depending on the mode. 

Then, for each new statistical test Tea tries to satisfy, Tea 
checks to see if each precondition holds. For each precondi-
tion checked, Tea adds the property and variable checked as an 
axiom to observe as future tests are checked. If any property 
violates the axioms derived from users’ assumptions, the prop-
erty is removed and the test is invalidated. Users’ assumptions 
always take precedence. 

The constraint solver then prunes the search space. Tea does 
not compute all properties for all variables, a significant opti-
mization when analyzing very large data sets. 

At the end of this process, Tea finds a set of valid statistical 
tests to execute. If this set is empty, Tea defaults to its imple-
mentation of bootstrapping [12]. Otherwise, Tea proceeds and 
executes all valid statistical tests. Tea returns a table of results 
to users, applying multiple comparison corrections [22] and 
calculating effect sizes when appropriate. 
Optimization: Recursive Queries 
When Tea verifies a property holds for a variable, it often must 
invoke another statistical test. For example, to check that two 
groups have equal variance, Tea must execute Levene’s test. 
The statistical test used for verification may then itself have a 
precondition, such as a minimum sample size. 

Such recursive queries are inefficient for SMT solvers like 
Z3 to reason about. To eliminate recursion, Tea lifts some 
statistical tests to properties. For instance, Tea does not encode 
the Levene’s test as a statistical test. Instead, Tea encodes 
the property of having equal variance between groups and 
executes the Levene’s test for two groups when verifying that 
property for particular variables. 

User Output 
The result of running a Tea program with data is a listing of the 
results of executing valid statistical tests, as shown in Figure 2. 
For each valid statistical test executed, the output contains the 
properties of data that Tea checked and used to determine that 
a statistical test applied, the test statistic value, p-value (and an 
adjusted p-value, if applicable), effect sizes (Cohen’s d [9] and 
Vargha Delaney A12 [48]), the alpha level the user specified 
in their program, the precise null hypothesis the statistical test 



examined, an interpretation of the results in APA format [2], 
and text recommending users to focus on effect size rather 
than the p-value for a holistic view of their data. This output is 
intended to inform users of why Tea selected specific statistical 
tests and how to interpret their results. 

Null Hypothesis Significance Testing Module 
Tea currently implements tests common to NHST in HCI. 
In particular, Tea supports four classes of tests: correla-
tion (parametric: Pearson’s r, Pointbiserial; non-parametric: 
Kendall’s τ , Spearman’s ρ), bivariate mean comparison (para-
metric: Student’s t-test, Paired t-test; non-parametric: Mann-
Whitney U, Wilcoxon signed rank, Welch’s), multivariate 
mean comparison (parametric: F-test, Repeated measures one 
way ANOVA, Factorial ANOVA, Two-way ANOVA; non-
parametric: Kruskal Wallis, Friedman), and comparison of 
proportions (Chi Square, Fisher’s Exact). Tea also supports an 
implementation of bootstrapping [12]. 

INITIAL EVALUATION 
We assessed the validity of Tea in two ways. First, we com-
pared Tea’s suggestions of statistical tests to suggestions in 
textbook tutorials. We use these tutorials as a proxy for expert 
test selection. Second, for each tutorial, we compared the 
analysis results of the test(s) suggested by Tea to those of the 
test suggested in the textbook as well as all other candidate 
tests. We use the set of all candidate tests as as a proxy for 
non-expert test selection. 

We differentiate between candidate and valid tests. A can-
didate test can be computed on the data, when ignoring any 
preconditions regarding the data types or distributions. A valid 
test is a candidate test for which all preconditions are satisfied. 

How does Tea compare to textbook tutorials? 
Our goal was to compare Tea to expert recommendations. 

We sampled 12 data sets and examples from R tutorials ([24] 
and [15]). These included eight parametric tests, four non-
parametric tests, and one Chi-square test. We chose these 
tutorials because they appeared in two of the top 20 statistical 
textbooks on Amazon and had publicly available data sets, 
which did not require extensive data wrangling. 

We translated all analyses into Tea and encoded any assump-
tions explicitly stated in the tutorial. Tea selected tests based 
only on the data and the assumptions expressed in the Tea 
program. Where Tea disagreed with the tutorials, either (1) the 
tutorial authors chose the wrong analyses or (2) the tutorial 
authors had implicit assumptions about the data that did not 
hold up to statistical testing. 

For nine out of the 12 tutorials, Tea suggested the same sta-
tistical test (see Table 2). For three out of 12 tutorials, which 
used a parametric test, Tea suggested using a non-parametric 
alternative instead. Tea’s recommendation of using a non-
parametric test instead of a parametric one did not change the 
statistical significance of the result at the .05 level. Tea sug-
gested non-parametric tests based on the Shapiro-Wilk test for 
normality. It is possible that tutorial authors visualized the data 
to make implicit assumptions about the data, but this practice 

or conclusion was not made explicit in the tutorials. (We dis-
cuss the trade-offs between statistical tests and visualizations 
for testing data properties in Section 8.) 

For the two-way ANOVA tutorial from [15], which studied 
how gender and drug usage of individuals affected their percep-
tion of attractiveness, a precondition of the two-way ANOVA 
is that the dependent measure is normally distributed in each 
category. This precondition was violated. As a result, Tea de-
faulted to bootstrapping the means for each group and reported 
the means and confidence intervals. For the pointbiserial cor-
relation tutorial from [15], Tea also defaulted to bootstrap for 
two reasons. First, the precondition of normality is violated. 
Second, the data uses a dichotomous (nominal) variable, which 
invalidates Spearman’s ρ and Kendall’s τ . 

Tea generally agrees with expert recommendations and is more 
conservative in the presence of non-normal data, minimizing 
the risk of false positive findings. 

Does Tea avoid common mistakes made by non-expert 
users? 
Our goal was to assess whether any of the tests suggested by 
Tea (i.e., valid candidate tests) or any of the invalid candidate 
tests would lead to a different conclusion than the one drawn 
in the tutorial. Table 2 shows the results. Specifically, empha-
sized p-values indicate instances for which the result of a test 
differs from the tutorial in terms of statistical significance at 
the .05 level. 

For all of the 12 tutorials, Tea’s suggested tests led to the same 
conclusion about statistical significance. For two out of the 12 
tutorials, two or more candidate tests led to a different conclu-
sion. These candidate tests were invalid due to violations of 
independence or normality. 

To summarize, the evaluation shows us that (i) Tea can repli-
cate and even improve upon expert choices and (ii) Tea could 
help novices avoid common mistakes and false conclusions. 

LIMITATIONS AND FUTURE WORK 
The goal of this paper was to design and assess Tea’s high-level 
DSL and constraint-based runtime system. Here, we identify 
limitations of the current work that suggest opportunities for 
future work. 

Empirical evaluation of usability. While we believe that 
abstracting away statistical tests—thus obviating the need for 
detailed statistical knowledge—will make Tea easier to use 
than conventional statistical tools, an empirical evaluation 
with non-statistical expert users is required to establish this. A 
study comparing Tea to conventional statistical analysis tools 
such as SPSS or R would be of particular interest. 

Dichotomous thinking, such as relying on the result of a signif-
icance test to definitively decide if there is evidence to support 
a hypothesis, ignores the need to consider the magnitude of 
effects. Practical significance is more important than statisti-
cal significance for decision making, so tools should support 
reasoning about practical significance. Tea aims to guide users 
away from dichotomous thinking and towards holistic interpre-
tations of analyses by providing effect sizes, clear statements 



Table 2: Results of applying Tea to 12 textbook tutorials.
Tea is comparable to an expert selecting statistical tests. Tea can prevent false positive and false negative results by suggesting only tests that satisfy all assumptions. 
Tutorial gives the test described in the textbook; Candidate tests (p-value) gives all tests a user could run on the provided data with corresponding p-values; 
Assumptions gives all satisfied (lightly shaded) and violated (white) assumptions; Tea suggests indicates which tests Tea suggests based on their preconditions 
(assumptions about the data). Emphasized p-values indicate instances where a candidate test leads to a wrong conclusion about statistical significance. Although 
this table focuses on p-values, Tea produces richer output that provides a more holistic view of the statistical analysis results by including effect sizes, for instance. 
Refer to Figure 2 for an example of output from a Tea program. 

Tutorial Candidate tests (p-value) Assumptions* Tea suggests 

Pearson 
[24] 

Pearson’s r 
Kendall’s τ 
Spearman’s ρ 

(6.96925e-06) 
(2.04198e-05) 
(2.83575e-05) 

— 
X 
X 

Spearman’s ρ 
[15] 

Spearman’s ρ 
Pearson’s r 
Kendall’s τ 

(.00172) 
(.01115) 
(.00126) 

X 
— 
X 

Kendall’s τ 
[15] 

Kendall’s τ 
Pearson’s r 
Spearman’s ρ 

(.00126) 
(.01115) 
(.00172) 

X 
— 
X 

Pointbiserial 
[15] 

Pointbiserial (Pearson’s r) 
Spearman’s ρ 
Kendall’s τ 
Bootstrap 

(.00287) 
(.00477) 
(.00574) 
(<0.05) 

— 
— 
— 
X 

Student’s t-test 
[24] 

Student’s t-test 
Mann-Whitney U 
Welch’s t-test 

(.00012) 
(9.27319e-05) 

(.00065) 

X 
X 
X 

Paired t-test 
[15] 

Paired t-test 
Student’s t-test 
Mann-Whitney U 
Wilcoxon signed rank 
Welch’s t-test 

(.03098) 
(.10684) 
(.06861) 
(.04586) 
(.10724) 

X 
— 
— 
X 
— 

Wilcoxon signed rank 
[15] 

Wilcoxon signed rank 
Student’s t-test 
Paired t-test 
Mann-Whitney U 
Welch’s t-test 

(.04657) 
(.02690) 
(.01488) 
(.00560) 
(.03572) 

X 
— 
— 
— 
— 

F-test 
[15] 

F-test 
Kruskal Wallis 
Friedman 
Factorial ANOVA 

(9.81852e-13) 
(2.23813e-07) 
(8.66714e-07) 
(9.81852e-13) 

X 
X 
— 
X 

Kruskal Wallis 
[15] 

Kruskal Wallis 
F-test 
Friedman 
Factorial ANOVA 

(.03419) 
(.05578) 

(3.02610e-08) 
(.05578) 

X 
— 
— 
— 

Repeated measures one way ANOVA 
[15] 

Repeated measures one way ANOVA (.0000) 
Kruskal Wallis (4.51825e-06) 
F-test (1.24278e-07) 
Friedman (5.23589e-11) 
Factorial ANOVA (1.24278e-07) 

X 
— 
— 
X 
X 

Two-way ANOVA 
[15] 

Two-way ANOVA 
Bootstrap 

(3.70282e-17) 
(<0.05) 

— 
X 

Chi Square 
[15] 

Chi Square 
Fisher’s Exact 

(4.76743e-07) 
(4.76743e-07) 

X 
X 

2 4 5 
2 4 
2 4 

2 4 
2 4 
2 4 

2 4 
2 4 
2 4 

2 4 5 
2 4 
2 4 

2 4 5 6 7 8 
2 4 7 8 
2 4 5 7 8 

2 4 5 7 8 
2 4 5 7 
2 4 7 
2 4 7 8 
2 7 

2 4 7 8 
2 4 7 
2 4 5 7 8 
2 4 7 
2 4 7 

2 4 5 6 9 
2 4 9 
2 7 
2 4 5 6 9 

2 4 9 
2 4 5 9 
2 7 
2 4 5 9 

2 4 5 6 7 9 
2 4 7 9 
2 4 5 6 7 9 
2 4 7 9 
2 4 5 6 9 

2 4 5 9 

2 4 9 
2 4 9 

* 1 one variable, 2 two variables, 3 two or more variables, 4 continuous vs. categorical vs. ordinal data, 5 normality, 6 equal variance, 7 dependent vs. 
independent observations, 8 exactly two groups, 9 two or more groups 



about the null hypotheses tested in each statistical test, the 
results of the statistical tests in light of the specific null hy-
pothesis, and citations for more statistical information (see 
Figure 2). However, Tea does not prevent partial reporting, or 
“cherry-picking” [11], of results. Further research is needed to 
investigate how automated systems show the results of multi-
ple analyses, perhaps with interactive scaffolding of results to 
avoid cherry-picking. 

Relaxing Tea’s conservatism. Tea is conservative in its test 
selection because Tea’s runtime system will execute a statisti-
cal test only when all the preconditions are met. In practice, 
some preconditions may be more important than others. For 
instance, Tea could allow some degree of deviation from abso-
lute normality. Further evaluation with statistical and domain 
experts could help refine Tea’s decision making procedure. 

The benefit of implementing Tea’s runtime system with con-
straints is that its knowledge base can expand and become 
more refined as best practices for statistics evolve. Tea could 
employ a more sophisticated constraint system where, for in-
stance, normality is treated as a soft constraint that has more 
weight when the sample size is small but is relaxed with a 
sufficiently large sample size. Still, normality tests may not 
be (a) ideal due to their over-sensitivity to small deviations 
from normality with large samples and their lack of power 
for small samples or (b) always necessary [34]. Therefore, a 
combination of statistical and graphical approaches to judging 
normality is likely best, as discussed next. 

Moreover, because sample size and acceptable degrees of 
violating assumptions are highly domain dependent, Tea 
could also be expanded to incorporate reconfigurable domain-
specific constraints. A promising direction is to imagine for-
malized domain-specific statistics guidelines. Similar to how 
LATEXuses style classes for typesetting text, Tea could take 
as input domain-specific guides for preferential weighting of 
properties and statistical tests. 

Incorporating visualizations and humans-in-the-loop. To 
ascertain properties about the data (e.g., normality), Tea uses 
statistical tests rather than visualizations. There are trade-offs 
and limitations to both approaches. Statistical tests may be sen-
sitive to sample size and slight violations, which is acceptable 
for many hypothesis tests and models [34]. The main advan-
tage of statistically checking data properties is that decisions 
are reproducible and more objective. Through visual inspec-
tion, trained analysts can examine the data, detect and assess 
any violations to data properties that are unacceptable in their 
domain, and notice other properties about the data to check. 
As visualizations form an important part of analysts’ work-
flows for building models [17] and generating hypotheses [5], 
future work should investigate incorporating visualizations 
with Tea for a human-in-the-loop system that supports data 
property checking and test selection. Tea already provides 
initial support for such interaction through its two modes of 
treating user assumptions. Human-in-the-loop systems could 
go back and forth between strict and relaxed adherence to 
user assumptions depending on sample size, data property, 
and user expertise. Scaffolding this back and forth process 

with visualization to enable novice analysts to learn statistical 
analysis skills is an interesting avenue for future research. 

Expanding beyond NHST. Tea’s architecture is designed to 
be flexible and support extension. Currently, Tea provides 
a module for NHST because NHST is the most common 
paradigm in HCI. As statistics norms change, it will be impor-
tant for Tea to support a broader range of analyses, including 
regression and Bayesian inference. 

Extending Tea’s architecture and language to Bayesian in-
ference presents several research challenges: (1) easing the 
process of choosing and expressing priors, (2) easing the pro-
cess of choosing and expressing models, and (3) suggesting 
appropriate statistical tests. A variety of probabilistic program-
ming languages emphasize language abstractions that let pro-
grammers succinctly express priors and models—BUGS [35], 
BLOG [38], Stan [7], Church [18], and Figaro [42] are a few 
prominent examples. Existing work suggests appropriate sta-
tistical tests for a researcher’s goals [30, 31, 37], but these 
suggestions are not embodied in a tool, language, or program-
ming environment; we look forward to developing ways to 
encode these into Tea. 

DISCUSSION 
This paper introduces Tea, a high-level programming language 
that supports users in formalizing and automating statistical 
analysis. 

Towards Task-Appropriate Analyses. Our evaluation shows 
that Tea’s constraint-based system to find suitable statistical 
tests generally matches the choices of experts. In particular, 
it automatically switches to non-parametric tests when para-
metric assumptions are not met. When preconditions are not 
met, Tea will always default to tests with fewer assumptions 
about the data, all the way to the bootstrap [12]. Tea prevents 
conducting statistical analyses that rely on unfounded assump-
tions. Given Tea’s automated test selection and assumption 
checking, analyses are more likely to be sound than is currently 
the case [6]. 

Towards Reproducible Analyses. Researchers have sug-
gested automation as an opportunity to increase the trans-
parency and reproducibility of scientific experiments and find-
ings [43]. Tea programs are relatively straightforward to write 
and read and therefore could serve as a way for researchers to 
share their analysis for others to reproduce and to extend. 

Towards Trustworthy Analyses: Pre-registration. Pre-
registration holds the promise of promoting trustworthy 
analyses—e.g., by eliminating HARKing [28] [8], “p-
hacking”, and “cherry picking” results. Tea can amplify ongo-
ing efforts for pre-registration by providing a standard format 
for expressing study designs, hypotheses, and researcher as-
sumptions. 

Even before collecting data, researchers can write Tea pro-
grams to explicitly state their experimental designs, assump-
tions, and hypotheses. Without data, Tea will (i) check that the 
program is syntactically correct and (ii) check for consistency 
between variable declarations and hypotheses to ensure that 
hypotheses are well-formed. If the assumptions hold with the 



(a) Specify the test. 

(b) Specify the properties. 
Figure 5: Tea can support pre-registration. Tea programs 
provide an executable format for pre-registration. When pre-
registering studies, users can explicitly state their assumptions 
about data properties or specify the exact statistical test they 
intend to run with data. Specifying the name of a test (a) is 
syntactic sugar for the more verbose form (b). The above code 
snippets are semantically equivalent. 

data (once collected), Tea will accurately select the valid tests 
that researchers have pre-registered. To more directly support 
the practice of pre-registering the specific statistical tests to 
run with data, Tea lets users state which statistical tests they 
want to execute once the data is collected. Stating the specific 
test names acts as syntactic sugar: during execution, Tea un-
rolls the statistical tests to assert the set of assumptions that 
would lead to its selection (Figure 5). Both methods achieve 
the same effect. 

Fine-Tuning the Division of Labor. Tea provides what Heer 
refers to as “shared representations,” representations that sup-
port both human agency and system automation [20] in statis-
tical analysis. Users are in ultimate control with Tea. Tea’s 
language empowers users to represent their knowledge and 
intent in conducting analyses (i.e., to test a hypothesis). Users 
convey their experimental designs, assumptions, and hypothe-
ses, the high-level goals and domain knowledge that only the 
user can provide. Tea takes on the laborious and error-prone 
task of searching the space of all possible statistical tests to 
evaluate a user-defined hypothesis. Thus, Tea complements 
users’ efforts to conduct valid statistical analyses. 

RELATED WORK 
Tea extends prior work on domain-specific languages for the 
data life cycle, tools for statistical analysis, and constraint-
based approaches in HCI. 

Domain-specific Languages for the Data Life Cycle 
Prior domain-specific languages (DSLs) have focused on sev-
eral different stages of data exploration, experiment design, 
and data cleaning to shift the burden of accurate processing 
from users to systems. To support data exploration, Vega-
lite [44] is a high-level declarative language that supports users 
in developing interactive data visualizations without writing 
functional reactive components. PlanOut [3] is a DSL for 
expressing and coordinating online field experiments. More 
niche than PlanOut, Touchstone2 provides the Touchstone 

Language for specifying condition randomization in experi-
ments (e.g., Latin Squares) [14].essential aspect of the domain 
knowledge users encode in Tea programs. To support rapid 
data cleaning, Wrangler [25] combines a mixed-initiative in-
terface with a declarative transformation language. Tea can be 
integrated with tools such as Wrangler that produce cleaned 
CSV files ready for analysis. 

In comparison to these previous DSLs, Tea provides a lan-
guage to support another crucial step in the data life cycle: 
statistical analysis. 
Tools for Statistical Analysis 
Research has also introduced tools to support statistical anal-
ysis in diverse domains. ExperiScope [19] supports users in 
analyzing complex data logs for interaction techniques. Ex-
periScope surfaces patterns in the data that would be difficult to 
detect manually and enables researchers to collect noisier data 
in the wild that have greater external validity. Touchstone [36] 
is a comprehensive tool that supports the design and launch 
of online experiments. Touchstone provides suggestions for 
data analysis based on experimental design. Touchstone2 [14] 
builds upon Touchstone and provides more extensive guidance 
for evaluating the impact of experimental design on statistical 
power. Statsplorer [50] is an educational web application for 
novices learning about statistics. While more focused on vi-
sualizing various alternatives for statistical tests, Statsplorer 
also automates test selection (for a limited number of statisti-
cal tests and by executing simple switch statements) and the 
checking of assumptions (though it is currently limited to tests 
of normality and equal variance). [50] found that Statsplorer 
helps HCI students perform better in a subsequent statistics 
lecture. 

In comparison to Statsplorer, Tea is specifically designed to 
integrate into existing workflows. Tea can be executed in any 
Python environment, including notebooks, which are widely 
used in data analysis. Tea enables reproducing and extending 
analyses by being script-based, and the analyses are focused 
on hypotheses that analysts specify. 
Constraint-based Systems in HCI 
Languages provide semantic structure and meaning that can be 
reasoned about automatically. For domains with well defined 
goals, constraint solvers can be a promising technique. Some 
of the previous constraint-based systems in HCI have been 
Draco [39] and SetCoLa [21], which formalize visualization 
constraints for graphs. Whereas SetCoLa is specifically fo-
cused on graph layout, Draco formalizes visualization best 
practices as logical constraints to synthesize new visualiza-
tions. The knowledge base can grow and support new design 
recommendations with additional constraints. 

Another constraint-based system is Scout [46], a mixed-
initiative system that supports interface designers in rapid 
prototyping. Designers specify high-level constraints based on 
design concepts (e.g., a profile picture should be more empha-
sized than the name), and Scout synthesizes novel interfaces. 
Scout also uses Z3’s theories of booleans and integer linear 
arithmetic. 

We extend this prior work by providing the first constraint-
based system for statistical analysis. 



CONCLUSION 
Tea is a high-level domain-specific language and runtime sys-
tem that automates statistical test selection and execution. Tea 
achieves these by applying techniques and ideas from human-
computer interaction, programming languages, and software 
engineering to statistical analysis. Our hope is that Tea opens 
up possibilities for new statistical analysis tools, helps re-
searchers in diverse fields, and resolves a century-old question: 
“Which test should I use to test my hypothesis?” 

USING TEA 
Tea is an open-source Python package that users can download 
using Pip, a Python package manager. Tea can be used in 
iPython notebooks. Information on how to download Tea and 
the source code can be accessed at http://tea-lang.org. 
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