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Figure 1: Simpler summaries were often the best reading experience for participants with little to no background in a scientific
topic. However, readers with high topic familiarity, even those considered part of the general public (i.e., not a researcher),
ignored more information in low complexity summaries while still reporting these simple summaries as equally engaging
as high complexity ones. Our results provide guidance on generating plain language summaries for a wider range of general
audiences.

ABSTRACT
Language models (LMs) show promise as tools for communicating

science to the general public by simplifying and summarizing com-

plex language. Because models can be prompted to generate text

for a specific audience (e.g., college-educated adults), LMs might be

used to create multiple versions of plain language summaries for

people with different familiarities of scientific topics. However, it is

not clear what the benefits and pitfalls of adaptive plain language

are. When is simplifying necessary, what are the costs in doing

so, and do these costs differ for readers with different background

knowledge? Through three within-subjects studies in which we sur-

face summaries for different envisioned audiences to participants

of different backgrounds, we found that while simpler text led to

the best reading experience for readers with little to no familiarity
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in a topic, high familiarity readers tended to ignore certain details

in overly plain summaries (e.g., study limitations). Our work pro-

vides methods and guidance on ways of adapting plain language

summaries beyond the single “general” audience.
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1 INTRODUCTION
A rich body of work in HCI has shown that for many interfaces, one

size does not fit all. Adapting interfaces to different users has the

potential to improve usability [13, 87], aesthetic judgements [28, 69],

and trust [61, 68]. Increasingly, language styles, such as community

language norms [26], formality [9], and text complexity [11, 95]

have been the focus of adaptable user interfaces. Work has shown

that language styles can impact behavior in online experiments

[9], counseling conversations [4], online communities [26], and

security interfaces [98]. This work has highlighted the benefits of

adapting language to people with different backgrounds [11].

With the rise of language models (LMs), interfaces promising

adaptable language have progressed rapidly. Models like GPT-4

can ostensibly rewrite language for any reader by prompting the

model to generate text for an envisioned audience or persona (e.g.,

a 5th grader) [52, 81, 104]. This is especially enticing in scholarly

and scientific communication, where language styles (e.g., medical

jargon) can present major communication barriers [85]. Research

has explored using models to adapt scientific papers for non-experts

(referred to as general audience readers in this paper) [11, 44],

and paid services like Elicit,
1
or Explainpaper

2
promise to make

scientific language easier to read and understand.

While adaptable language interfaces for communicating science

are promising, it is not clear when and how to adapt. Most research

showing that general audience readers respond positively to sim-

plified language has focused on a single version of a simplified

summary and a single general audience [31, 42, 44]. People have

different knowledge and topic familiarity (e.g., someone who has

read popular science books on a subject compared to someone who

has not) that can impact how they respond to scientific informa-

tion [14, 39, 74], suggesting that a simplified summary may be good

for some, while a more complex version may be advantageous for

others. However, no work has empirically shown this to be the case.

Further, simplified summaries usually convey less information [7]

and can unintentionally lead to people being overconfident in their

understanding [90]. In contexts where details are important, it may

be important to preserve all information, even at the cost of longer

or more complex text (e.g., a medical research paper [11]). This gap

in research is particularly important for developers of new interac-

tive text interfaces [11, 63] because it is currently not clear what

the benefits and pitfalls of adaptive text are: when is simplifying

necessary, what are the costs in doing so, and do these costs differ

for readers with different background knowledge?

Here we investigate how changes in scientific text affect the

reading experience of general audience readers, for the first time

taking into account varying levels of complexity in the text and

background topic familiarity of the reader. We focus on scientific

text complexity, defined as a combination of simple language and

information content (§2). We introduce three RQs to understand

how changes in complexity and information content affect readers:

RQ1: How do participants of different backgrounds

respond to human-written scientific text at different

complexity levels?

1
https://elicit.org/

2
https://www.explainpaper.com/

RQ2: How do participants of different backgrounds

respond to machine-generated scientific text at dif-

ferent complexity levels?

RQ3: How do participants respond to generated sci-

entific summaries at different complexities if they

report similar information?

We started with studying expert-written summaries (RQ1) to

establish what benefit we might expect from using alternative com-

plexity versions, assuming no interference from imperfect text

generation tools. We followed up with two studies using machine-

generated summaries. In study 2 we used generated summaries

with no restriction on information content (RQ2), following prior

work on generating scientific summaries for general audience read-

ers [10, 43]. In study 3 we evaluated generated summaries that

aimed to preserve information content in lower complexity sum-

maries (i.e., explaining details rather than removing them) (RQ3).

We ran within-subjects experiments on Mechanical Turk for each

RQ (Study 1: 𝑁 = 199, Study 2: 𝑁 = 191, Study 3: 𝑁 = 203) evalu-

ating whether topic familiarity affected participants’ response to

summaries written or generated for different envisioned audiences

at three levels of complexity.

We found that topic familiarity mattered for determining the

ideal summary for a reader. While the lowest complexity summaries

were generally better for people with minimal topical knowledge

(illustrated in the lower left quadrant of Figure 1), participants with

more topic familiarity reported similar reading experiences across

the three summary versions. Further, the lowest complexity sum-

maries came with two costs to high familiarity participants. The

first was that low complexity summaries in studies 1 and 2 removed

details and reported on less information than high complexity sum-

maries, shown with automatic and manual evaluations. This loss of

information came with the benefit of improving the reading experi-

ence for low familiarity participants, but there was no benefit for

high familiarity participants. The second, related cost was that high

familiarity participants were more likely to skip sections of lower

complexity summaries in all three studies (upper left quadrant of

Figure 1). The most commonly skipped text focused on a paper’s

limitations, highlighting the risk that low complexity summaries

have for high familiarity readers.

Our findings provide guidance on when and how to adapt scien-

tific language to general audiences readers. Given our findings, we

propose to only use the plainest language when an audience knows

very little about a topic. In cases where audiences might have ex-

tensive background knowledge (even if they are not researchers

themselves), language can be more complex—even drawn from the

research paper—in order to convey more information and keep

more knowledgeable audiences engaged (§4 & 5). When it is vital to

convey complete information, such as in a patient-clinician context,

plain language that explains all information can still be beneficial

even if it is much longer, but only to those with little knowledge of a

scientific topic (§6). Our findings make the following contributions:

(1) Shows the effect of text complexity on general au-
dience readers of varying topic familiarity (e.g., not

comparing doctors and patients, but comparing different

patients). We found that plain language summaries are bet-

ter for those with little knowledge of a topic, and complex

https://elicit.org/
https://www.explainpaper.com/
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summaries, even those containing original scientific text, are

better for those with more background knowledge.

(2) Highlights the benefits and pitfalls of generating plain
language summaries. When plain language summaries

matched a reader’s background, readers had better reading

experiences (e.g., were more engaged and had an easier time

reading); however, plain language summaries often included

less information and could lead to increased skipping when

readers were more familiar in a topic.

(3) Provides guidance on generating plain language for
different audiences. Science communicators and interface

designers can use our findings and methodology (§5.1.1 &

6.1.1) to effectively provide multiple summaries of scientific

findings to different people and build adaptive text interfaces.

We discuss this guidance further in §7.1.

While LMs make it possible to generate language for a wide

range of contexts and people, there are also risks of factually in-

correct generations [67]. We discuss these risks in the context of

science communication (§5.1.2) and the need for expert oversight

for generative systems (§7). Our work illustrates ways for auto-

mated methods to assist human efforts in communicating scientific

information to a wider range of people, going beyond a single

general audience.

2 LANGUAGE COMPLEXITY
In this paper we define language complexity based on prior work in

readability, plain language summarization, and science communi-

cation. Broadly we break down complexity along two dimensions:

surface level, textual features of the language (referred to as “plain-

ness” in this paper) and the information conveyed by the language

(referred to as “information content”). In this work we realize dif-

ferent language complexities by writing or generating summaries

to different potential audiences (e.g., a high-school educated adult).

In most science communication writing, both plainness and in-

formation content are varied to produce text suitable for different

audiences. This joint variation is reflected in the guidelines for plain

language summaries
3
and in the strategies science writers use to

communicate with interested publics [7]. At the same time, these

two dimensions have real-world constraints: there are situations in

which technical words must be used to convey specific meaning,

or where there is a desire to understand the majority of the details

in the original scientific article, such as a patient reading a medical

research paper or lab report [11, 76]. In studies 1 and 2, we allow

plainness and information content to vary based on the intended

audience (§4 & §5). In study 3, we explicitly try to preserve infor-

mation content by explaining rather than removing details from

the high complexity summaries to evaluate the effect longer plain

summaries have on readers of different backgrounds (§6).

3 RELATEDWORK
Below we cover additional prior work related to language personal-

ization, plain language summaries for science communication, and

augmented reading.

3
https://consumers.cochrane.org/PLEACS

3.1 Personalizing language
There is a rich literature on adaptive interfaces and personaliza-

tion in many domains, including website design [86], advertise-

ment [46, 101], study recruitment [8], journalism [2], and education

[35, 38, 77]. Usually personalization focuses on adjusting visual ele-

ments, but work has also shown the benefit of adjusting language

to different audiences. In the medical domain, Dimarco et al. [34]

proposed HealthDoc, a system that generated personalized patient

pamphlets according to patient demographic information, educa-

tion, and health history. Prior work has found that such tailoring of

patient pamphlets can improve health outcomes, including smoking

behavior and future health complications [66, 96, 100]. In journal-

ism, Adar et al. [2] introduced PersaLog, a system for authoring

personalized news articles. Articles authored using PersaLog pre-

sented alternative content (e.g., heat estimates for different areas)

depending on user traits (e.g., a user’s location). Finkelstein et al.

[38] showed that adjusting the dialect of a tutoring system could

improve learning outcomes for children using African American

English. Also in the education domain, work has shown that adjust-

ing learning environments to learning styles or using personally-

relevant examples can improve learning objectives [27, 53]. Past

work has also personalized generated news articles [78], scientific

definitions [71], recommended articles to read [45], and the amount

of text displayed in a website [107].

Previous adaptive language-based interfaces have either relied

on experts to author multiple versions of content [2], used rules and

templates to automatically adjust content [34, 78], or focused on

specialized populations (e.g., researchers [71]). Manually writing

versions of text for each possible reader is infeasible, and rule-

based approaches are brittle and only applicable to narrow content

adaptation. In this paper we evaluate the feasibility of using modern

NLP techniques to automatically generate multiple versions of text

across a range of language complexities to communicate scientific

information to different general audience readers.

3.2 Plain language summaries
Plain language summaries (PLS), also referred to as lay-summaries,

patient summaries, or consumer summaries [99] are becoming an

increasingly common method for communicating scientific find-

ings with the public. Shailes [93] surveyed ten organizations that

produced plain language summaries, finding that while summaries

might initially be intended for one audience (e.g., undergraduates),

often other people would engage with the summaries [88].

Studies have also explored how plain language summaries should

be written based on empirical evidence from readers. Santesso et al.

[89] found that using structured headings and narrative flow im-

proved comprehension compared to paragraphs of text explaining

results. Ellen et al. [36] interviewed participants about their prefer-

ences for plain language summaries, finding that people prefer key

message headings and bullets over paragraphs. Silvagnoli et al. [95]

explored the preferences of summary text complexity, measured

by automated readability formulas, across different age groups.

They found that most people preferred a medium complexity, while

the lowest complexity was viewed as too simple and the highest

complexity as too hard. Other work has studied how to present

numerical results in summaries [17], uncertainty in findings [3]

https://consumers.cochrane.org/PLEACS
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and how summaries compare to other methods of science outreach,

such as infographics [16], press releases [51] and Wikipedia arti-

cles [6]. In this paper we investigate if there is a benefit to adjusting

the complexity of plain language summaries to different general

audience readers.

3.3 Augmenting scientific reading
New interaction techniques have augmented readers’ process to

improve understanding and engagement, especially for scientific

text. Chaudhri et al. [19] introduced Inquire Biology, a biology

textbook that allows students to view concept definitions and ask

open-ended questions about information in the textbook. Work has

also developed new interaction techniques for researchers reading

papers, including surfacing definitions [47], searching over related

work sections [80], providing paper passages that answer natural

language queries [109] and navigating concepts within a paper

[1, 50]. With the improved performance of LMs like GPT-3, 3.5, and

4 [79], there has been dramatic growth in augmented reading inter-

faces for scientific papers [63]. For the general public, August et al.

[11] introduced PaperPlain, a reading interface augmented with

NLP to support general audience readers in approaching medical

research papers. PaperPlain includes a curated set of key questions

for guiding readers to the most important information in research

papers. Augmented readers have also been released as products. Ex-

plainpaper
4
is an LM-powered reading interface that allows users

to ask questions over a paper and get simplified summaries.

Recent advances in NLP have also introduced automated meth-

ods to augment science communication [29, 44, 103]. Devaraj et al.

[31] introduced a dataset of plain language summaries for clinical

topics and a trained model for simplifying medical information.

Laban et al. [57] constructed a new dataset of simplification edits

made on Wikipedia articles, Basu et al. [12] introduced a dataset

of simplification edits for medical texts, and Guo et al. [42] intro-

duced a new evaluation suite for plain language summarization.

August et al. [10] introduced methods to generate definitions at

different levels of complexity. Shaib et al. [92] evaluated simpli-

fied summaries of biomedical papers generated by GPT-3, finding

that GPT-3 could simplify and summarize from single paper, but it

struggled to synthesize information across multiple papers.

Previous work for augmenting or generating scientific text ei-

ther assumes there is a single ideal summary for all readers, or that

adapting language to an individual reader is always useful. To our

knowledge, no work has investigated if and when adaptation is

important for scientific communication. This is of particular impor-

tance to developers of augmented reading interfaces because it is

currently not clear when augmentation or adaptation is necessary.

For example, do all general audience readers need a reading inter-

face to provide a plain language summary of a scientific paper? If

so, should this summary look the same for everyone, or is there

measurable improvement in reading experience if the summary

matches the background of the reader? In this paper we investi-

gate how general audience readers with different familiarity in a

scientific topic respond to scientific text at different complexities

to inform the development of augmented reading interfaces for

scientific text.

4
https://www.explainpaper.com/

4 STUDY 1 – EXPERT-WRITTEN SUMMARIES
Study 1 focused on expert-written summaries to establish what

benefit we might expect from alternative complexity versions. The

study answered our first research question:

RQ1: How do participants of different backgrounds

respond to human-written scientific text at different

complexity levels?

Science writers adapt scientific language for general audiences.

However, there is rarely a single general audience, and writers may

use different strategies to engage different general audiences [7, 84].

Study 1 investigated how adjusting scientific language complexity

affected people of different knowledge backgrounds.

4.1 Method
The three studies shared the majority of their procedure, materials,

participant recruitment, and analyses (Figure 2). Below we report

on the shared portions and those unique to study 1. Later, we report

on differences in the methodology of studies 2 (§5) and 3 (§6).

4.1.1 Procedure. Participants answered questions about their sci-

entific background, read summaries of scientific papers at three

levels of complexity, and answered questions about the summaries.

At the start of each experiment, participants filled out a demograph-

ics questionnaire, including questions on their education, STEM

experience, and interest in scientific subjects. After the demographic

questionnaire, participants read three article summaries, described

in §4.1.2. The articles and complexity levels were randomized. Each

participant saw one of each complexity in random order.

Summaries were broken down into sections answering key ques-

tions about the paper, following prior work showing that sections

and headers were preferred by general audience readers [89]. The

key questions were based on prior work studying the key informa-

tion that science communicators focus on in a paper [7, 21] and

from questions general audience readers found useful to determine

relevant information in research papers [11]. Summaries were dis-

played as a title and a list of accordions (Figure 3). Participants

could open multiple accordions at once. The questions were:

(1) What did the paper want to find out?

(2) What did the paper do?

(3) What did the paper find?

(4) What are the limitations of the findings?

(5) What is the real world impact of this work?

Below the summary, participants could check a box requesting

the original research paper. If participants checked this box, then a

link to the paper was provided at the end of the study. Participants

were asked to read the summaries for at least 30 seconds, though

they could read for as long as theywanted. If participants clicked the

continue button before 30 seconds, they were prompted to read for

at least 30 seconds. They could ignore this prompt by clicking the

continue button again. Participants on average took 143 seconds per

article (std=103 seconds) for study 1, 100 seconds (std=84) for study

2, and 137 seconds (std=78) for study 3. Participants then answered

questions on their topic familiarity and reading experience.

4.1.2 Materials.

https://www.explainpaper.com/
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1
2 3

Collect demographics
Read summaries Collect familiarity & 

reading measures

Repeated x3 with different articles

Complexity

Info. req.

High → original text 

Low →  simplified

Strict (S3) → simplify/elaborate by sentence

Loose (S1, S2) → simplify summary

or 

S1 S2, S3 

Source 

Figure 2: Flowchart of the studymethod, with shared features of all studies listed once. Ordering of summaries were randomized.

Article selection. We selected research papers that had public

appeal by sampling papers posted and widely discussed in the large

subreddit r/science in 2019. We randomly sampled 10 papers posted

on r/science that contained a link to a research paper (as opposed to

a press release or news article), and that had a score within the top

10% of posts containing research papers. We used the PSAW Python

PushShift API for accessing r/science.5 The papers ranged in topics

from public policy to nanotechnology, reflecting the breadth of

research papers posted and discussed on r/science.

Authoring the summaries. An expert science writer with over 5

years of science communication experience crafted two versions of

each summary. Each version was written for a different audience

of a certain education level: a high school student or a college

educated adult. In addition, the writer extracted sentences from

the original paper to answer each key question. This constituted a

third complexity aimed at other researchers. We defined these three

complexity levels as Low (high school student), Medium (college

educated adult), and High (researcher). Because the original paper

text used a different voice than the other two versions, we lightly

edited the High version by changing “we” to “the researchers.” One

author reviewed each summary version and provide feedback to

the writer on language complexity between the three versions

in four weekly meetings, as well as asynchronously with Google

Docs. The rest of the authors reviewed the completed summaries to

determine that each versionwas distinct from the others in language

complexity. The writer was paid $17.22 USD per hour. Table 1

provides examples of the summaries and Table 2 lists word and

sentence statistics for all summaries. All summaries are provided

in the supplementary.

5
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4.1.3 Measuring language complexity. We additionally report on

automated measures of complexity for each summary version in

order to see how the generated summaries differ across complex-

ity levels. Table 2 details the measures for each generated version.

We report on three automated measures: uncommon words (i.e.,

English words outside the top 1,000 most common), function word

count, and language model perplexity. While these measures do

not capture all dimensions of complexity, they are measures for

analyzing scientific complexity at scale used in prior work on ad-

justing language in science communication [10, 42]. Each measure

is described in more detail in Appendix A.

Table 2 reports the results of the automated measures for all

three studies. The Medium and Low machine generated summaries

in studies 2 and 3 had noticeable differences in average number of

words, average proportion of uncommon English words outside

the top 1,000, average proportion of function words, and language

model perplexity. Compared to the expert written summaries, the

generated summaries had more differences in the automated com-

plexity measures, especially for generated text in study 2.

4.1.4 Participants. We recruited participants on Amazon Mechani-

cal Turk with the slogan, “Read about interesting scientific findings

and answer questions about your experience.” Participants were

paid $2.50. Participants were required to have completed over 1,000

HITs with a minimum approval rating of 95% and be US-based. For

studies 1 and 3, participants were required to be master Turkers.

This study was approved by our institution’s IRB. We removed par-

ticipants whose native language was not English (1 in study 1, 2 in

study 2, and 3 in study 3) and who indicated in a final self-report sur-

vey that they had technical difficulties or were cheating (1, 12, and

0, respectively). After removal, we had 199 participants for study 1,

191 for study 2, and 203 for study 3. Table 3 lists demographics and

topic familiarity.

https://psaw.readthedocs.io/en/latest/
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Figure 3: The study interface for reading the article summaries. The accordions started closed.

Extrinsic motivations like payment can lead participants to max-

imize pay at the expense of data quality (e.g., by rushing through a

study [9, 106]). Studies 1 and 3 used Master Turkers, who have been

shown to provide data quality equivalent to intrinsically motivated

participants (e.g., participants motivated by supporting science)

[106]. After finding comparable results between master and non-

master workers in a study 2 pilot, we did not include the masters

requirement for study 2. However, we did have to remove more

participants who had reported cheating during study 2.

While participants might have behaved differently (e.g., skipped

less sections, §4.1.5) if they were interested in the summaries for

their own sake, we did not expect this to bias differences across

complexity versions due to the within-subjects nature of the studies.

Considering that prior work studying general audience readers of

scientific articles has found that readers may skip parts of an article
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Source Complexity Summary

High These results demonstrate an unprecedented opportunity for development of

these nanorgs as renewable sugar-free microbial factories for the production of

biofuels and chemicals.

Expert - Study 1

Medium This work is some of the first to examine the feasibility of interfacing nanoscale
materials with living cells . . . which could have broader implications for
diagnostic and therapeutic applications of this technology.

Low This work is some of the first to be done investigating the possibility of using
nanoscale materials inside living cells . . . which has far-ranging applications
for medicine.

Machine - Study 2

Medium The study found that nanorobots ... can be used to externally regulate the cellular
function of living cells using electromagnetic stimuli such as light, sound,
or magnetic field.

Low This study found that nanorogs can be used ... to control living cells using light,
sound, or magnetic fields.

Machine - Study 3

Medium This study shows that nanoscale organisms (nanorgs) can be developed into sus-
tainable, sugar-free factories.

Low These findings show a new chance to create tiny organisms (called nanorgs) . . .
without using sugar, using sunlight in a way that can be reproduced on a larger
scale.

Table 1: Examples of the summaries. These summaries were under the heading “What are the real world impacts of the findings?”
for the same paper. Bolded purple text indicates examples of changes in information content between the summaries, and
italicized blue text indicates changes in plainness. For study 2, there was no information restriction in generated summaries. In
study 3, there was information restriction for generated summaries.

Source Complexity # Wordsstd # Sentences Unc. Words ↑ Func. words ↓ Perplexity ↑
High 483.10107.02 16.704.03 0.550.04 0.270.03 94.6030.91

Expert - Study 1

Medium 369.6082.56 12.101.97 0.470.05 0.310.02 60.0814.84

Low 358.9098.92 11.503.21 0.430.05 0.320.02 53.689.96

Machine - Study 2

Medium 529.20182.48 20.807.05 0.510.04 0.310.03 64.1424.16

Low 259.0043.42 13.201.75 0.280.05 0.360.03 23.925.71

Machine - Study 3

Medium 878.90212.81 31.008.06 0.480.02 0.340.02 46.269.90

Low 1005.00273.63 37.709.91 0.370.03 0.370.02 34.404.83

Table 2: Average number of words and sentences, along with differences in automated complexity measures between in each
summary version. For study 2, there was no information restriction in generated summaries. In study 3, the summaries were
generally longer because they included more details from the High summaries (i.e., they had stricter information requirements).
Arrows denote expected increase (↑) or decrease (↓) in measure as complexity increases.

[24], we are excited to investigate how our findings generalize to

readers motivated simply by interest in a topic.

4.1.5 Measures.

Topic familiarity. After each summary, participants rated their

familiarity with the article’s topic on a 1—5 Likert-style scale based
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Study 1 Study 2 Study 3

Age

0-19 0 0 0

20-29 14 49 9

30-39 68 87 76

40-49 71 32 57

50-59 29 18 29

60-69 14 4 21

70-79 3 1 2

80+ 0 0 0

Gender

Male 98 96 93

Female 99 95 109

Prefer not to answer 2 0 4

Education

Pre-high school 0 1 0

High school 58 30 48

College 117 114 137

Graduate school 19 40 20

Professional school 5 6 1

# STEM courses

after high school

0 36 21 36

1–3 89 93 104

4–6 41 57 32

7–10 11 9 10

≥11 22 11 21

(a) Participant demographics

Familiarity Study 1 Study 2 Study 3

1 359 150 297

2 115 72 134

3 97 132 134

4 26 165 39

5 0 54 5

Total 597 573 609

(b) Topic familiarity based on question “How fa-
miliar are you with the topic of this article?” 1=“I
have never heard about this topic before”, and 5=“I
have written research papers on this topic.”

Table 3: Participant demographics (a) and topic familiarity (b) for all studies

on the question: “How familiar are you with the topic of this ar-

ticle?”
6
with 1 being “I have never heard about this topic before”

and 5 being “I have written research papers on this topic.” Table 3b

details the topic familiarity ratings for the three studies.

Reading experience ratings. We collected subjective ratings to un-

derstand how the different complexity levels affected participants’

reading experience. Participants completed the ratings after reading

each summary. All ratings were based on a 1–5 Likert-style scale.

These included:

(1) Reading ease: Participants rated their reading difficulty

based on the question: “How easy was it for you to read the

article?”

(2) Understanding: Participants rated their confidence under-

standing the summary based on the question: “How confi-

dent do you feel in your understanding of the article?”

(3) Interest: Participants rated how interesting they found a

summary based on the question: “How interesting did you

find the article?”

(4) Value: Participants rated how valuable they found the in-

formation in the summary based on the question: “How

much would you agree that this article contained valuable

information?”

Skipped sections. We analyzed how many summary sections par-

ticipants skipped in each complexity condition. As described in

6
Because participants were only ever presented summaries, not the original paper, in

the study the summaries were referred to as ‘articles.’

§4.1.1, each summary was made up of five accordian drop-downs

that participants could open. Each accordian section began closed.

Participants were not instructed to open all sections. To determine

which sections were opened, we logged click events for each accor-

dian section.

Requested articles. A primary goal of science communication is

to encourage audiences to engage further with science [74]. We

capture the potential for increased engagement with science by

analysing how likely participants were to request the original sci-

entific article after reading a summary.

4.1.6 Analysis. We compared measures across the complexity ver-

sions using linear mixed-effects models (LMMs). LMMs are com-

monly used to analyze data in which the same participant provides

multiple, possibly correlated, measurements, referred to as repeated

measures [62] and have been used as an analysis tool in the behav-

ioral sciences [25] and human-computer interaction [47, 48].

We fit a model for each reading experience rating, number of

skipped sections, and original article requests. Each model con-

tained fixed effects for the complexity version, topic familiarity,

an interaction term for familiarity and complexity, and random

effects for paper and participant IDs. We conducted post-hoc two-

sided 𝑡-tests for pairwise comparisons to examine the differences

in measures between pairs of complexity levels estimated by the

linear mixed effects models. These pairwise comparisons reveal not

only what differences between measures are significant, but the

estimated differences 𝑑 between measures. Because 𝑑 is estimated
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by the linear mixed-effects model, it represents the expected differ-

ence in some measure (e.g., reading ease), when controlling for the

participant and paper random effects in the model. For example, if

the estimated difference 𝑑Low−High
in reading ease between two

complexity options Low and High is 0.894, we can interpret this

difference as participants rated the Low complexity, on average,

0.894 points higher for reading ease (out of 5) compared to the

High complexity when controlling for participant and paper. We

report these differences to provide further intuition about the effect

of different complexity levels. We also include effect sizes, calcu-

lated using Cohen’s 𝑑 and denoted 𝑆𝑀𝐷 for standardized mean

difference, as an additional measure of effect beyond the estimated

pairwise difference.

The reading experience measures used Likert-style scales, mak-

ing parametric tests potentially not appropriate, we report analo-

gous non-parametric tests in Appendix B, which yield similar 𝑝-

values and findings. For these analyses we use the pymer4 Python

package for fitting the models and pairwise comparisons. All 𝑡-

tests were corrected from multiple hypotheses using the Holm-

Bonferroni correction. The analysis was equivalent for the three

studies. We report all pairwise differences and test statistics in

Appendix F.

4.2 Results
Table 8 in the appendix lists all pairwise differences.

4.2.1 Reading experience measures. Figure 4a plots all participants’
ratings across summary complexities for study 1. Overall partici-

pants found the Low summaries most appealing. Across all mea-

sures there is a greater number of high ratings and fewer low ratings

as participants are presented with less complex summaries. Com-

pared to the High summaries, participants rated Low summaries as

significantly easier to read (𝑑ease = 0.893, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.99),

understand (𝑑understand = 0.589, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.77), and

more interesting (𝑑interest = 0.381, 𝑝 = 0.018, 𝑆𝑀𝐷 = 0.55). Partici-

pants also rated the Medium summaries as significantly easier to

read and were more confident in their understanding compared

to the High summaries (𝑑ease = 0.653, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.71;

𝑑understand = 0.400, 𝑝 = 0.006, 𝑆𝑀𝐷 = 0.59).

Topic familiarity was a strong indicator of reading experience

measures and interacted with summary complexity. Looking at

Figure 5, as familiarity increased, ratings across all metrics and com-

plexity levels generally went up (i.e., the orange bars shrink while

the dark purple bars grow). Also apparent in Figure 5: at low famil-

iarity, rating distribution are most different across the complexity

levels. As familiarity increases, though, there were fewer low rat-

ings and more high ratings for all complexity levels. This effect was

also illustrated in the linear mixed effect models. Participants who

rated their familiarity with a summary’s topic lowest (1 on a scale of

1—5) rated the Low summaries as being significantly easier to read,

understand, more interesting, and containing more valuable infor-

mation compared to the High summaries in study 1 (𝑑ease = 1.490,

𝑆𝑀𝐷 = 1.27; 𝑑understand = 1.160, 𝑆𝑀𝐷 = 1.07; 𝑑interest = 0.943,

𝑆𝑀𝐷 = 0.80 ; 𝑑value = 0.509, 𝑆𝑀𝐷 = 0.49; 𝑝 < 0.0001 for all com-

parisons). Participants who were most familiar with the summary’s

topic, though, rated High complexity summaries as similarly easy

to read and understand, and equally interesting and valuable as Low

and Medium summaries. Table 8 in the appendix lists all pairwise

differences.

4.2.2 Skipped sections. Participants on average skipped 0.113 (std

= 0.536) sections (out of 5). Skipped sections were lowest for the

High summaries (mean=0.060, std=0.327) compared to the Low

(mean = 0.129, std = 0.559) and Medium (mean = 0.149 std = 0.661)

summaries. Topic familiarity mattered for determining number

of skipped sections. Participants who rated their topic familiarity

highest (4 on a 1—5 scale), clicked on significantly fewer sections in

the Low summaries compared to the High summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 =

0.682, 𝑝 = 0.008, 𝑆𝑀𝐷 = 0.68). Table 8 in the appendix lists all

pairwise differences between skipped sections. Across all studies,

the most common section skipped by participants was the paper’s

limitations (“What are the limitations of the findings?”, 25% of

skipped sections), the least common section was the paper’s goals

(“What did the paper want to find out?”, 13%).

4.2.3 Original article requests. Participants on average requested

the original article 14.7% of the time. Requests were roughly similar

across the complexity levels (Low: mean=14.5%, Medium: mean

= 15.5%, High: mean=14.0%). Topic familiarity affected how likely

participants were to request the original article depending on com-

plexity level. Participants with the second lowest familiarity (2 out

of 5) requested the original article significantly less often in the Low

summaries compared to the High summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = −0.184,
𝑝 = 0.007, 𝑆𝑀𝐷 = −0.47). Table 8 in the appendix lists all differ-

ences.

5 STUDY 2 - MACHINE-GENERATED
SUMMARIES WITH NO RESTRICTION ON
INFORMATION CONTENT

The results from study 1 suggest that low complexity summaries

are best for low familiarity participants, while high familiarity

participants were more likely to skip sections in low complexity

summaries. We were curios if we would see similar differences

in complexity preference with machine-generated summaries. We

therefore conducted study 2, answering our second research ques-

tion:

RQ2: How do participants of different backgrounds

respond to machine-generated scientific text at dif-

ferent complexity levels?

There are methods to automatically adjust generated language

complexity [10], but no work has explored the interaction of gener-

ated language complexity and participant background knowledge.

Here we follow prior work on automated plain language summa-

rization and allow generated text to vary information content freely

[43, 57]. In study 3 we explore methods to preserve information

through all complexity levels (§6).

5.1 Method
Below we describe generating summaries for study 2 and assessing

their factuality. Please refer to §4.1 for shared methodology of

studies 1, 2, and 3.

5.1.1 Materials.
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(a) Study 1 with expert-written summaries

(b) Study 2 with machine-generated summaries and no information restriction.

(c) Study 3 with machine-generated summaries and information restriction.

Figure 4: Distribution of ratings for each subjective reading experience measure across complexity levels. The ratings were
based on the following questions: Reading ease: “How easy was it for you to read the article?”, Understanding: “How confident
do you feel in your understanding of the article?”, Interest: “How interesting did you find the article?”, Value: “How much
would you agree that this article contained valuable information?” Notice the greater number of high ratings (purple) and
fewer low ratings (orange) as participants are presented with less complex summaries.

Generating the summaries. We generated summaries at different

complexities in a two step process. In the first step, we gener-

ated candidate summaries using GPT-3. GPT-3 is a language model

commonly used in generation tasks, including plain language sum-

marization [15]. We adapted a preset prompt for GPT-3 to gener-

ate summaries with varying complexity. The original prompt was

“Summarize this for a second-grade student: [TEXT]” Our adapted

prompts for GPT-3 were 14 alternate prompts, from “first-grade

student” to “twelfth-grade student”, along with “college student”

and “college-educated adult.” We used GPT-3 (davinci-003) in July

2022. with temperature set to 0.3 and the rest of the parameters

set to default OpenAI API settings. At the time we ran this study,

more sophisticated systems like ChatGPT had not been released.

We investigate more sophisticated models (i.e., GPT-3.5 Turbo) in

Study 3 (§6.1.1).

Because GPT-3 was not designed to explicitly vary text complex-

ity, we additionally used the complexity ranker from August et al.

[10] to rank the GPT-3 generations on a gradient of complexity.

The complexity ranker was a linear discriminator trained to clas-

sify scientific text as either from a news article or research paper.

The ranker used features shown to be predictive of reading diffi-

culty in scientific language, including technical word occurrences,

proportion of function words, and text length [10]. After scoring

each generation for complexity, we selected the generation with

the highest and lowest score for the Low and Medium versions.

For the High summaries, we used the original sentences extracted

from the paper by the writer in §4.1.2. More details on the GPT-3

generations are in Appendix C.

5.1.2 Assessing factuality in generated summaries. A major limita-

tion of language models is that they can generate text with meaning

that was not part of the original input [67], referred to as hallucina-

tions [41, 67]. While there are methods for reducing hallucinations

or encouraging factuality [40, 56, 65], no automated method guar-

antees factual accuracy or fidelity to original text. In the context of

science communication, such hallucinations can risk confusing or,

worse, misinforming readers. A reader might trust a hallucinated

result opposite to what was reported in the original paper [32], or

be so confused by the contradictory evidence as to lose trust in the

research.
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Figure 5: Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for
study 1 (expert written summaries).

Because of these risks, we advocate for NLP systems to be used

in conjunction with experts. Plain language summaries are often

written by researchers, editors, or science writers [93, 99]. Authors

could generate multiple versions of a summary and then verify fac-

tual accuracy. In this way, we could lessen the workload of writing

plain language summaries, make summaries adaptable to different

audiences, and protect against factually incorrect generations.

In the context of study 2 and 3, one author selected generations

that did not contain factually incorrect information, acting as the ex-

pert for checking generated summaries before publishing. In study

2, out of 120 generated summaries (6 sections including the title

× 10 papers × 2 complexities), 14 generations contained incorrect

information. In all 14 cases, a replacement was found by selecting

from at most 6 alternative generations. The average number of

generations the author looked at to find a replacement was 2.36.

For study 3, while there were generations that were ill-formed (e.g.,

the model asking for clarification on an acronym) there were no

factually incorrect generations. This difference in factuality might

be due to improvements between GPT-3 (used in study 2) and GPT-

3.5 (used in study 3).
7
Appendix E contains more information on

hallucinations in our generated summaries.

5.2 Results
5.2.1 Reading experience measures. Similar to study 1, partici-

pants in study 2 rated Low summaries as significantly easier to

read (𝑑ease = 0.535, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.56) and understand

(𝑑understand = 0.323, 𝑝 = 0.001, 𝑆𝑀𝐷 = 0.38) than the High sum-

maries (Figure 4b). However, we observed two different results in

this second study. First, while study 1 participants found Medium

summaries significantly easier to read and understand than High

summaries, study 2 participants did not. Second, while study 1

participants did not rate the Low and Medium summaries as sig-

nificantly different, study 2 participants did rate Low summaries

as significantly easier to read and understand than Medium sum-

maries (𝑑ease = 0.472, 𝑝 < 0.0001, 𝑆𝑀𝐷 = 0.53; 𝑑understand = 0.279,

𝑝 = 0.004, 𝑆𝑀𝐷 = 0.29).

7
Because GPT-3.5 is a proprietary system, the full details of which have not been

disclosed, we cannot be certain about whether or how factuality was improved.
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Figure 6: Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for
study 2 (machine-generated summaries and no information restriction).

Topic familiarity again interacted with complexity to equalize

reading experience measures. Similar to study 1, participants with

the lowest familiarity of a summary’s topic rated the Low sum-

maries as being significantly easier to read, understand, more in-

teresting, and containing more valuable information compared to

the High summaries (𝑑ease = 1.642, 𝑆𝑀𝐷 = 1.34 𝑑understand = 1.103,

𝑆𝑀𝐷 = 0.94 𝑑interest = 0.909, 𝑆𝑀𝐷 = 0.62 𝑝 < 0.0001; 𝑑value =

0.407, 𝑝 = 0.031, 𝑆𝑀𝐷 = 0.25 ). In contrast, participants with the

highest familiarity (5 on a 1–5 scale) rated their reading experience

similarly between the complexity versions. Figure 6 plots ratings.

5.2.2 Skipped sections. Participants on average skipped 0.785 (std =
1.621) sections in study 2. While the overall rate of skipped sections

was higher than for study 1, the trend of more skipped sections for

lower complexity summaries held. Skipped sections were lowest

for the High summaries (mean=0.749, std=1.543) compared to the

Low (mean=0.849, std=1.710) and Medium (mean=0.759, std=1.613)

summaries. Similar to study 1, participants with the highest rated

familiarity (5 on a 1—5 scale) skipped significantly more sections in

the Low summaries compared to the High summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 =

0.900, 𝑝 = 0.011, 𝑆𝑀𝐷 = 0.35). This estimated difference between

skipped sections constitutes close to a full extra section skipped

(e.g., skipping all of the summary’s limitations).

5.2.3 Original article requests. Participants on average requested

the original article 52.5% of the time. Generally participants re-

quested the original article from the Low summaries more of-

ten (mean=55.5%) than either the Medium (mean=48.2%) or High

(mean=53.9%). In contrast to study 1, where low familiarity par-

ticipants requested the original article more for High summaries,

participants in study 2 with the second lowest familiarity requested

the original article significantly more often in the Low summaries

compared to the Medium summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.214, 𝑝 = 0.036

𝑆𝑀𝐷 = 0.68). Table 9 in the appendix lists all pairwise differences.

The results from study 2 corroborate and expand on our findings

from study 1. Participants with low familiarity preferred gener-

ated low complexity summaries, while high familiarity participants

again skipped sections of low complexity summaries more often.

One contrasting finding from study 2 was that some participants

with low familiarity requested the original article more often for

low complexity summaries over more complex summaries. Given

that we observed similar findings from study 1 with expert-written

summaries, the results of study 2 suggest that machine-generated
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summaries are a viable method for efficiently adjusting language

to different audiences.

6 STUDY 3 - MACHINE-GENERATED
SUMMARIES PRESERVING INFORMATION
CONTENT

Summaries from studies 1 and 2 had no restriction on what infor-

mation needed to be included. This followed past work in plain

language summarization, where writers or models select some in-

formation to explain, and remove other information (e.g., focusing

on a single finding or concept for low complexity text) [7, 43, 97].

However, selectively conveying information comes with the risk

of removing information a reader might want [11], or giving a

reader a false sense of understanding [90]. Emboldened by newer,

stronger models being released (e.g., ChatGPT, or GPT-4), we were

curious if generated text could preserve details from high complex-

ity summaries in their low complexity counterparts, potentially

mitigating the risk of information loss. This motivates our third

research question:

RQ3:How do participants respond to generated scien-

tific summaries at different complexities if they report

similar information?

6.1 Method
Below we describe our method for generating summaries in study

3. Please refer to §4.1 for shared methodology of studies 1, 2, and 3.

6.1.1 Materials.

Generating detail-preserving summaries. In studies 1 and 2, there

was no requirement that summaries preserve information (i.e., it

was acceptable if a simpler summary removed some information).

For study 3, we sought to generate low complexity summaries

that preserved information content (i.e., were plainer but included

all details). We did this by leveraging stronger models released

after study 2 and developing a prompting technique to simplify

each sentence separately, prompting the model to elaborate on

details rather than remove them. In simplification literature, both

removing and elaborating on details are common tasks [12, 57]. In

the context of study 3, we structured model input and prompts to

minimize detail removal and maximize elaboration for all details

in the original sentence. We used GPT-3.5 Turbo in May 2023 with

temperature set to 1.0 and the rest of the parameters set to default

OpenAI API settings.

We generated summaries that did not remove and instead elabo-

rated on details by restricting the model input and changing our

prompting technique. Rather than input the entire High summary,

as in study 2 (§5.1.1), we provided GPT-3.5 with a single sentence

at a time and instructed it to explain, rather than remove, any in-

formation from the original sentence. To avoid having subsequent

sentences repeat themselves, the prompt included the history of pre-

vious simplified sentences and instructed the model not to explain

a concept it had explained above. In addition to the instructions,

the prompt included one example of a scientific sentence and its

associated simplified version.

We used two prompts, one for Medium summaries and one for

Low. The Medium prompt instructed the model to rewrite the

sentence for someone very familiar with the topic of the sentence,

with a target reading level of a college educated adult. For the Low

summaries the target user was someone who was not at all familiar

with the sentence’s topic, with a target reading level of 5th grade.

5th grade was chosen based on previous work in generating plain

language summaries [11], and on our observations that selecting a

high school reading level, as we had done for the expert-authored

summaries, produced text similar to the Medium prompt. The full

prompts are included in Appendix D. Table 1 provides examples of

the generated summaries.

6.1.2 Measuring information content in summaries. Before collect-
ing participant response to the summaries, we analyzed how in-

formation content differed between the summary versions in the

three studies. We used four automatic measures and one manual

measure of information content based on previous work studying

alignment between scientific text and summaries [37, 43, 55]:

SummaC: Laban et al. [56] introduced an natural language

inference (NLI) approach to summary consistency. Themethod

uses an NLI model to score each sentence from a source sum-

mary with sentences from a target summary on how much

the target sentences follow from the source sentence (i.e., is

true given the source sentence). We use the SummaC-Conv

model using the default settings from the original metric

library.
8

SuperPAL: Ernst et al. [37] introduced a supervised method

for scoring alignment between source and target summaries

by annotating spans of text representing information units

(i.e., a standalone fact). Using these annotated spans, the

authors trained a model for the task of identifying informa-

tion alignment between a source and target summary. In

an evaluation of alignment scores for scientific summaries,

SuperPAL was found to be the most effective at identifying

aligned claims between the source and target [55]. We use

the bui-nlp/superpal model
9
with the default settings.

ROUGE-L [60]: ROUGE is a common score for assessing

summary quality by scoring the number of n-gram overlaps

between source and target summaries. ROUGE has also been

used as a baseline approach to aligning sentences between

source and target summaries [43]. Following this prior work,

we use ROUGE-L, which measures the longest common sub-

sequence of tokens between a source and target sentence.

We use the Huggingface evaluate package for calculating

ROUGE-L.
10

BERTScore [108]: BERTScore is a common score for sum-

mary evaluation that computes semantic similarity using

pre-trained contextual embeddings from the BERT model

[33]. We use the Huggingface evaluate package for calcu-

lating BERTScore and report the F1 score.
11

8
https://github.com/tingofurro/summac/tree/master

9
https://github.com/martiansideofthemoon/longeval-summarization

10
https://github.com/huggingface/evaluate/tree/main

11
https://github.com/huggingface/evaluate/tree/main

https://github.com/tingofurro/summac/tree/master
https://github.com/martiansideofthemoon/longeval-summarization
https://github.com/huggingface/evaluate/tree/main
https://github.com/huggingface/evaluate/tree/main
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For each measure we take the average maximum alignment

score for sentences in the High summaries with sentences from the

Medium and Low summaries. If a sentence in the High summary

has low alignment scores for all sentences in the Medium or Low

summaries, this would suggest that the information is not reported

in the summaries.

In addition to the automatic measures reported above, we ran

a manual evaluation of the information content between each of

the summary version. We annotate all information units—defined

similar to prior work as proposition-level semantically equivalent

statements [37]—for the High summaries and count how many of

these units appear in the Medium and Low summaries. Annotating

information units at this level has been used in prior work for eval-

uating claims in scientific summaries [55]. In our summaries these

units were predominately definitions of terminology, reporting of

results, methodological details, and background explanations. Our

codes are provided in the supplementary.

Table 4 lists the scores for summaries’ information content.

Across all measures and versions, the Low summaries score lower

than theMedium summaries. Themost common information skipped

in all the summaries (based on our manual evaluation of informa-

tion units) was information about the findings from the studies.

This aligns with feedback from our writer, who said that in the Low

summaries they focused on only the most import finding, while

in the Medium summaries they included more details. One reason

for the lower scores on most automatic measures for the expert

summaries might be due to the writer using fewer overlapping

words compared to the models. The same can explain the higher

ROUGE-L score for the study 2 Medium summaries, which used

many spans verbatim from the original summaries. In comparison

to the summaries from studies 1 and 2, though, the summaries in

study 3 have consistently higher scores and differences between

the Medium and Low versions are within 1.5 standard deviations.

6.2 Results
6.2.1 Reading experience measures. Compared to the first two stud-

ies, there were smaller differences in reading experience ratings

between the three complexity versions. Figure 4c plots the over-

all ratings. While participants generally rated Low summaries as

easier to read (𝑑ease = 0.166, 𝑝 = 1.0, 𝑆𝑀𝐷 = 0.29) and understand

(𝑑understand = 0.734, 𝑝 = 0.051, 𝑆𝑀𝐷 = 0.24) compared to High

summaries, these differences were smaller and not significant.

Participants who had the lowest familiarity of the summary’s

topic again rated the Low summaries as significantly easier to read

and understand than the High summaries (𝑑𝑒𝑎𝑠𝑒 = 0.362, 𝑝 = 0.019,

𝑆𝑀𝐷 = 0.27; 𝑑𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 = 0.420, 𝑝 = 0.003, 𝑆𝑀𝐷 = 0.28). Similar

to studies 1 and 2, participants with more familiarity rated the

three summary versions similarly, with no significant differences

between them. Figure 7 plots ratings broken down by familiarity.

6.2.2 Skipped sections. In Study 3, participants on average skipped

0.554 (std=1.220) sections. Similar to studies 1 and 2, skipped sec-

tions were lowest for the High summaries (mean=0.490, std=1.134)

compared to the Low (mean=0.529, std=1.209) and Medium (mean

= 0.642, std=1.310) summaries. Participants who rated their topic

familiarity as a 3 out of 5, indicating moderate familiarity, skipped

significantly more sections in the Medium summaries compared

to the High summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.472, 𝑝 = 0.026, 𝑆𝑀𝐷 = 0.57)

and Low summaries (𝑑𝑢𝑛𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 0.583, 𝑝 = 0.004, 𝑆𝑀𝐷 = 0.51).

6.2.3 Original article requests. Similar to study 2, participants re-

quested the original article from the Low summaries more often

(mean=18.7%) than either the Medium (mean=12.8%) or High sum-

maries (mean=12.8%). Also supporting our results from study 2,

participants in study 3 with the lowest familiarity requested ar-

ticles significantly more often after reading the Low summaries

compared to the Medium summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.108, 𝑝 = 0.023,

𝑆𝑀𝐷 = 0.39) and High summaries (𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 0.110, 𝑝 = 0.023,

𝑆𝑀𝐷 = 0.34). Table 10 in the appendix lists all pairwise differences.

7 DISCUSSION
In this paper we set out to understand how general audience readers

with different background knowledge respond to alternative ver-

sions of scientific language. We conducted three studies, using both

human-written andmachine-generated text, investigating the effect

of language complexity and topic familiarity on reading experience

and behavior. We found that the lowest complexity summaries,

both human-written and machine-generated, provided the most

benefit to readers with little familiarity of a scientific topic (e.g.,

those who had never heard of the summary’s topic before). Not only

did low complexity summaries make it easier for low familiarity

participants to read and understand the summaries, but in the case

of machine-generated summaries, the low complexity summaries

also encouraged them to request the original scientific article more,

engaging with the science beyond what was required for the study.

In most cases, though, the benefits of low complexity came at the

cost of reduced information content. In our first two studies, low

complexity summaries provided less information overall than high

complexity summaries, especially in reporting multiple findings

(§6.1.2). In our third study, when we encouraged models to generate

plain language that preserved details, we found that only readers

with the lowest topic familiarity rated the longer plain summaries as

easier to read and understand (§6.2). Most science communication

text focuses on the most important findings and theories to convey

by default [7, 21]. This is because reporting all scientific findings

in plain language requires explaining any concepts an audience

might not know [105], leading to long explanations that risk reader

fatigue and loss of interest. Our findings from study 3 align with

this work by showing that conveying complete information in plain

language leads to longer summaries that were only easier to read

for those who had no background in the summary’s topic.

While lower complexity summaries might be ideal for low famil-

iarity readers, they may invite high familiarity readers to ignore

information. Across the three studies, participants with higher

familiarity skipped sections of low complexity summaries signifi-

cantlymore than high complexity summaries. This could potentially

be due to lack of interest, or feeling like the summary was talk-

ing down to them [95]. In some cases, the difference in number of

skipped sections was close to one section out of five. While not all

information may be necessary to convey, the skipped information

was often the most risky to skip: the study’s limitations.

Our findings are the first to illustrate the benefits and draw-

backs of simplification for general audience readers with varying

background knowledge. Prior work developing systems to support
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Source Complexity SummaC SuperPAL ROUGE-L BERTScore Info. Units

Expert - Study 1

Medium 0.086.188 0.227.012 0.211.115 0.8790.026 0.557.255

Low 0.098.194 0.225.001 0.197.102 0.8780.024 0.478.241

Machine - Study 2

Medium 0.782.359 0.673.161 0.730.308 0.9570.047 0.810.317

Low 0.290.360 0.384.250 0.203.128 0.8820.027 0.418.264

Machine - Study 3

Medium 0.839.263 0.722.042 0.439.124 0.9260.022 0.998.014

Low 0.750.302 0.684.077 0.313.112 0.9100.022 0.977.062

Table 4: Differences in automated information content measures between summary versions.

Figure 7: Distribution of ratings for each reading experience measure across complexity and participant topic familiarity for
study 3 (machine generated summaries with information restriction).

science communication has predominantly focused on providing

a single version of simplified language and treated general audi-

ence readers as a single, monolithic group [31, 42]. While science

communicators have a strong intuition that adapting language to

different audiences is important [7], no work has taken the step

of showing that such adaptation can provide measurable benefits.

In our three studies, we show that the simplest summaries benefit

readers with the least knowledge of a topic the most, and that more

complex summaries are best for those with greater background

knowledge.

7.1 Guidance on adaptive plain language
This paper provides guidance on designing generated language for

both science communicators and interface designers. Based on our

findings we make the following suggestions:

• Low complexity for low familiarity/information The

least complex plain language summaries are better when
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one or both of the following is true: there is no requirement

to convey complete information (§4 & 5), or the reader has

little to no familiarity in the topic (in this case longer, plain

summaries can be used, §6).

• High complexity for high familiarity More complex

summaries—even with text drawn from the research paper—

are better when audiences havemore background knowledge

(even if they are not experts in a field), in order to convey

more information and keep readers engaged (§4 & 5).

• Plain language for high information, when necessary
LMs can be used to generate plain language summaries that

preserve details (§6.1.1); however, these summaries only ben-

efit those with little knowledge of a scientific topic (§6) and

should be used only when necessary because it leads to much

longer text that risks losing readers that have even moderate

topic familiarity.

Science communicators can use our findings to guide their ef-

forts when reaching different audiences. If an article is intended

for readers with no familiarity in a topic, a science writer could

meet these needs by generating and editing a very plain summary

or by assessing their own writing with automatic complexity mea-

sures (§4.1.3). In contrast, if a science communicator is worried

about losing the engagement of readers with more topic familiarity,

they could focus on a more complex summary, either generated

or written. Further, a writer could create multiple alternative ver-

sions of a summary suited for different audiences quickly using our

generation techniques (§5.1.1 & 6.1.1).

Interface designers can also leverage the techniques we illustrate

in our studies to create interactive and adaptive reading interfaces.

For example, a reading interface could generate a new summary

on-the-fly based on the reader, or allow readers to interactively

select different versions as they read. Short user surveys could be

used to determine the ideal adaptation [102], similar to the method

employed in this paper (§4.1.5). A complementary method would

be to model users through behavioral signals, a common approach

in the education literature [30, 54]. We observed that participants

with higher familiarity were more likely to skip sections when the

complexity was too low. A system that adapts scientific complexity

could monitor how much skipping a reader engages in, increasing

complexity with increased skipping. Another approach to modeling

a user in this context is to analyze past reading or writing behavior

[5]. A system could predict an ideal complexity based on the termi-

nology and concepts contained in documents a user already knows.

We recommend some level of user control for adaptive language.

While users might not always know the ideal level of complexity

for themselves, an adaptive language system could also include a

knob or dial that allows a reader to scan through possible versions

if the current adaption is not ideal.

One major hurdle in deploying systems using language models

is the risk of hallucinations. We argue that such hallucinations

necessitate human expert involvement. Rather than expert involve-

ment being a limitation, though, we envision it improving human-

human communication across the barriers that scientific language

can impose. Science communication is ideally a conversation, not

only a transmission of information [74]. Our hope is that requiring

expert oversight will help science communicators quickly create

summaries that serve diverse audiences while also encouraging

communicators to think deeply about the audiences they are reach-

ing with their work.

8 CONCLUSION
In this paper, we investigate how general audience readers respond

to scientific summaries written or generated at different levels

of complexity. Across our three studies, using expert-written and

machine-generated summaries, we show that the ideal text is based

on a participant’s familiarity of a topic. Low familiarity participants

rated the low complexity summaries as easiest to engage with.

High familiarity participants rated the summaries equally regard-

less of complexity, while skipping more sections of low complexity

summaries. We also find that using traditional generation or sci-

ence communication techniques often leads to loss in information

as language becomes less complex, but that new generative mod-

els are capable of generating plain text while explaining complex

topics, retaining much of the information of higher complexity sum-

maries. Our findings highlight the tradeoffs in adapting language

complexity for different audiences and provide a path forward for

communicating scientific information to a wider range of people.
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A AUTOMATED COMPLEXITY MEASURES
Below we describe in more details the automated complexity mea-

sures used in §4.1.2.

Thing Explainer out-of-vocabulary (TE): We count the

ratio of words outside the top 1,000 most common words in

English. The words are based onWiktionary’s contemporary

fiction frequency list.
12

This method was popularized by

the popular book Thing Explainer, which explains scientific

concepts using only the 1,000 most frequent words in English

[70].

Function words In medical communication, the proportion

of function words (e.g., prepositions, auxiliary or verbs) was

found to be positively correlated with perceived and actual

readability [58, 59]. We measure the proportion of function

words in a sentence using scispacy [73].

Language model perplexity (GPT ppl.) Language models

are systems for predicting words in a sequence. The perplex-

ity of the model is a measure of how different a sequence of

text is from the language the model was trained on. Perplex-

ity has been found to correlate with perceived and actual

reading difficulty [23, 82]. We use the GPT model [83] to

measure language model perplexity, as it was trained on

common English (as opposed to scientific text).

B ORDINAL REGRESSION FOR LIKERT-SCALE
VARIABLES

As our reading experience measures were measured on a Likert-

style scale, the linear mixed effects model (LMM) estimates could

be ill-suited for analysis, especially if these measures were not suf-

ficiently normally distributed. As an alternative, we additionally fit

analogous cumulative link mixed-effects models (CLMM) from the

ordinal R package [20] and conducted likelihood ratio tests, which

are similar to F-tests but more conservative, on the interaction term

of complexity level of article familiarity.

To accurately identify the effect complexity has on our measures

and its interaction with topic familiarity, we define two models

for each measure. Each model includes the same random effects of

paper ID and participant ID to control for variation among papers

and participants.

(1) LMMfull : Containing fixed effects for the complexity ver-

sion, topic familiarity, an interaction term for familiarity and

complexity, and random effects for paper and participant

IDs.

(2) LMMnone : Containing a fixed effect for topic familiarity and

random effects for paper and participant IDs.

With these models we evaluate how complexity affects reading

measures (e.g., reading ease) by comparing the model goodness-of-

fit between LMMfull and 𝐿𝑀𝑀𝑛𝑜𝑛𝑒 using the 𝜒2 likelihood-ratio

test. If LMMfull has a significantly stronger fit, this suggests that

complexity has a significant effect on that reading measure.

Table 5 lists the 𝑝-values for the likelihood ratio tests on the

CLMM and LMM models. The 𝑝-values are similar across the two

12
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Contemporary_fiction

methods, with the one exception being a significant difference in

understanding for Study 3. To confirm our findings of differences

across complexity measures, we additionally ran Mann–Whitney

𝑈 -tests on the reading experience ratings. While the studies were

within-subjects, we treated the data as unpaired because familiarity

ratings differed across the same participant, and therefore were not

grouped together. While these tests did not control for participant

or paper random effects (as the post-hoc 𝑡-tests we report in the

results do), the findings remained similar to those reported in Tables

8, 9 and 10. Following prior work [11, 47, 75], we report results from

the parametric tests (i.e., LMMs and pairwise difference 𝑡-tests) in

the paper.

C GENERATING SUMMARIES - STUDY 2
GPT-3 was not designed to explicitly vary text complexity, so while

generations might vary naturally in complexity due to the changes

in prompt, there is no guarantee that prompts will align with com-

plexity (i.e., prompting GPT-3 with “Summarize for a first grade

student” will not necessarily lead to lower complexity than prompt-

ing with “tenth grade student”). In a preliminary analysis of the

summaries, we found that the summaries, while tending toward

simpler with lower grades, could still be quite complex in the first

grade prompted version and much simpler at higher grade levels.

Table 6 provides examples of generations and associated prompts.

There are automatic methods for scientific information extrac-

tion [22] and PDF parsing [64, 94] that could in the future be used

extract information directly from a research paper PDF. We leave

such extensions to future work, as our goal was to explore the fea-

sibility of automatically adjusting language complexity. Any errors

introduced by other automated methods (e.g., incorrect text from

PDF parsing) could muddy our ability to identify how alternate

complexity levels perform in our envisioned context.

D GENERATING SUMMARIES - STUDY 3
The full prompts were:

• Low: You are a helpful assistant who will rewrite 5-10 sci-

entific sentences for a reader who is not at all familiar with

the sentence’s topic. You will be given one sentence after

another. For each sentence, define any necessary terms and

provide any background knowledge that a reader who is

not at all familiar with this topic might need. Your target

grade level is 5th grade. You do not need to explain a term

or concept you have already explained. Your goal is to help

a lay reader understand all the information contained in the

original sentence. Below is an example.

Input sentence: The accretion of terrestrial planets from

the solar nebula has been a subject of extensive theoretical

modeling and simulation.

Simplified output: The growth of rocky planets like the Earth

by adding particles, called accretion, from the cloud of dust

and gas surrounding the early Sun, called the solar nebula,

has been studied a lot using theoretical calculations and com-

puter simulations. Theoretical calculations refer to math that

is used to make predictions about how things happen based

on a particular theory. Computer simulations are programs

that model how a system works.

https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Contemporary_fiction
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Measure Model Study 1 𝑝 Study 2 𝑝 Study 3 𝑝

Reading Ease

CLMM 168.28 <0.001 94.39 <0.001 14.04 <0.01
LMM 181.04 <0.001 108.33 <0.001 15.92 <0.05

Understanding

CLMM 118.23 <0.001 51.22 <0.001 9.41 0.116

LMM 134.63 <0.001 55.08 <0.001 12.39 <0.05

Interest

CLMM 57.38 <0.001 18.22 <0.01 10.11 0.116

LMM 61.64 <0.001 26.88 <0.001 9.32 0.107

Value

CLMM 18.66 <0.001 11.09 <0.05 7.08 0.132

LMM 19.64 <0.001 10.65 <0.01 8.82 0.107

Table 5: Likelihood ratio test statistics and 𝑝-values for likelihood ratio test of cumulative link (CLMM) and linear (LMM)
mixed-effects models. Significant values are bolded. 𝑝-values are adjusted using Holm-correction.

Prompt Level Summary

Second-grade

student

In this study, people who could do more than 40 pushups were associated with a reduced risk

of having a heart problem in the next 10 years, compared to those who could do fewer than 10.

The study also found that people who could do more than 10 pushups had a reduced risk of

having a heart problem, and that the risk decreased as the number of pushups increased.

Seventh-grade

student

This study found that people who could do more than 40 pushups were less likely to have a

heart problem in the next 10 years. The study also found that the more pushups someone could

do, the less likely they were to have a heart problem.

College student This study found that people who could do more than 40 pushups had a significantly lower

risk of having a cardiovascular disease event, compared to those who could do 10 or fewer.

This may be because those who could do more pushups also had better baseline cardiovascular

disease risk factors. They also found that people who could do 11 or more pushups at the start

of the study had a lower risk of having a cardiovascular disease event during the study.

Table 6: Examples of the generated summaries with different prompts for study 2 using GPT-3. Note that the prompts were
not used to select complexity levels. This part of the summaries was under the heading “What did the paper find?” Notice
how the second grade prompt is slightly longer and uses larger words (e.g., “associated with reduced risk” compared to “less
likely to”) than the seventh grade prompt. At the same time, the college student prompt uses more complex language (e.g.,
“cardiovascular disease event”) compared to both other generations.

• Medium: You are a helpful assistant who will rewrite 5-10

scientific sentences for a reader who is very familiar with

the sentence’s topic. You will be given one sentence after

another. For each sentence, define any necessary terms and

provide any background knowledge that a reader who is very

familiar with this topic might need. Your target grade level is

a college-educated adult. You do not need to explain a term

or concept you have already explained or that the reader is

likely to know. Your goal is to help the reader understand all

the information contained in the original sentence. Below is

an example.

Input sentence: The accretion of terrestrial planets from

the solar nebula has been a subject of extensive theoretical

modeling and simulation.

Simplified output: The formation of terrestrial planets through

accumulating dust, gas, and debris, called accretion, from the

solar nebula, has been studied extensively using theoretical

calculations and computer simulations.

E FACTUALITY IN GENERATED SUMMARIES
Out of 120 generated summaries in study 2 (6 sections × 10 papers

× 2 complexities), 22 were labelled as containing any hallucinated

content. The labels were mutually exclusive. There were three types

of hallucinations we identified: correct information not from the

original text, incorrect information not from the original text and

reversing the direction of findings. Table 7 includes examples of

these three hallucinations.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA August et al.

The extent and kind of hallucinations in our summaries can

tell us what risk such hallucinations pose and how much effort an

expert must invest to make the summaries publishable. For example,

if the majority of hallucinations are new but correct information (a

common type of hallucination [18]), then they pose less of a risk

and require less expert knowledge to fix than if the hallucinations

instead reverse the direction of a found effect (another type of

hallucination [32]). We generated summaries with no restriction

on hallucinated content. After generation, one author labelled all

generations for hallucinated content.

Including correct information not from the original text occurred

in 3 hallucinations. Usually these hallucinations included text about

the study findings with no associated text from the original source

text, or else hallucinated the existence of graphs from additional

studies (e.g., “This chart shows the probation rates of the US popu-

lation ...”). These hallucinations reported correct information, even

though the information was not reported in the source text.

9 hallucinations included incorrect information not from the

original text. These hallucinations added unrelated findings to the

summary that were not reported in the study. Examples include

hallucinating an association between asthma and nut intake, while

the original article reported on nut intake and neuropsychological

development.

Including correct and incorrect information not from the original

text are similar to extrinsic hallucinations in the summarization

literature [41], or information insertion in the simplification litera-

ture [32]. Both refer to hallucinations adding information not found

in the original source.

Reversing the direction of findings occurred in 5 hallucinations.

These hallucinations reported the exact opposite result than was

reported in the original study. These hallucinations are considered

intrinsic hallucinations, or information substitution which are hallu-

cinations that include information in direct contrast to the original

source [32, 67].

These three types of hallucinations are well-documented in liter-

ature studying generative model hallucinations [18, 32, 41, 67]. We

add to this previous literature by showing how such hallucinations

occur in this reading context.

We also explored using automated methods to identify hallu-

cinations. We tried two commonly used automated measures for

hallucinations, SummaQA [91] and entity-level F1 [72]. SummaQA

uses a BERT-based question answering model to answer questions

extracted from the source text with the summary text. We use the

original extracted sentences as the source text. Entity-level F1 mea-

sures the number of entities that occur in a generated summary

compared to the ground truth summary. We use scispacy [73] to

extract entities. We observed no significant differences in either

score between generated summaries with or without hallucinations

(two-sided 𝑡-test 𝑡118 = 0.04, 𝑝 = 0.972 for SummaQA F-score,

𝑡118 = 1.90, 𝑝 = 0.119 for entity-level F1 after Holm correction).

When inspecting the scores of generations, we also observed that

both scores skewed positively (i.e., measured less hallucinated con-

tent) towards summaries that had language more similar to the

original. This led to the scores negatively impacting the lower com-

plexity summaries since they used language more distinct from the

original researcher version. Based on these results, we did not use

any automated factuality scores to curate the summaries.

F PAIRWISE TEST STATISTICS
Below we report all test statistics for pairwise comparisons in the

three studies.
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Hallucination type Example Reason % Generations

Incorrect additional infor-

mation

The study found that the babies of women

who ate nuts during pregnancy were less

likely to have certain health problems.

Nothing in study about

health problems

7.5%

Correct additional informa-

tion

These cells work together to make sure that

we feel pain when we are hurt. This is im-

portant because it helps us to avoid getting

hurt again.

Nothing in original ar-

ticle about the impor-

tance of pain sensation

2.5%

Reverse direction of find-

ings

This study found that spending more time

playing video games can lead to more ag-

gressive behavior.

Finding was that time

spent playing video

games did not lead

to more aggressive

behavior

4.2%

Table 7: Three types of hallucinations encountered in our generated summaries in study 2 (with GPT-3).
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 0.554 <0.0001 1.490 <0.0001 0.936 <0.0001
2 0.103 0.621 0.782 0.001 0.679 0.003
3 0.197 0.391 0.695 0.013 0.498 0.059

4 0.101 0.817 0.609 0.544 0.508 0.588

All 0.238 0.069 0.894 <0.0001 0.655 <0.0001

Understanding

1 0.458 <0.0001 1.160 <0.0001 0.701 <0.0001
2 0.022 0.910 0.693 0.002 0.671 0.002
3 0.172 0.597 0.391 0.240 0.219 0.597

4 0.160 1.0 0.127 1.0 -0.033 1.0

All 0.203 0.094 0.593 <0.0001 0.390 0.006

Interest

1 0.296 0.021 0.943 <0.0001 0.647 <0.0001
2 -0.007 0.975 0.298 0.593 0.305 0.593

3 0.024 1.0 -0.009 1.0 -0.033 1.0

4 0.864 0.220 0.261 0.603 -0.603 0.520

All 0.294 0.085 0.373 0.042 0.079 0.613

Value

1 0.314 0.020 0.509 <0.0001 0.195 0.104

2 -0.012 1.0 0.009 1.0 0.021 1.0

3 -0.087 1.0 -0.099 1.0 -0.012 1.0

4 0.329 1.0 -0.123 1.0 -0.451 1.0

All 0.136 0.996 0.074 1.00 -0.062 1.00

Skipped Sections

1 0.041 0.994 0.051 0.994 0.009 0.994

2 -0.107 0.813 -0.007 0.941 0.099 0.813

3 -0.252 0.056 -0.008 0.943 0.244 0.056

4 0.285 0.202 0.682 0.008 0.398 0.202

All -0.008 0.892 0.179 0.020 0.188 0.020

Article Requests

1 0.009 0.768 0.056 0.206 0.047 0.270

2 -0.026 0.659 -0.184 0.007 -0.159 0.017
3 -0.078 0.439 0.027 0.685 0.105 0.287

4 0.063 1.0 0.018 1.0 -0.045 1.0

All -0.008 1.0 -0.021 1.0 -0.013 1.0

Table 8: Post-hoc (two-sided) tests for pairwise differences in fixed-effects estimates between complexity versions and across all
participant topic familiarities for study 1 with expert-written summaries. ‘All’ topic familiarity refers to pairwise differences
across complexity levels without a topic familiarity subgroup (e.g., average difference across complexity levels.) This table
reports the difference in fixed-effects estimates 𝑖 − 𝑗 and Holm-Bonferroni-corrected 𝑝-values [49] under our mixed-effects
model, where 𝑖 and 𝑗 correspond to complexity options. — 𝐿𝑜 = Low, 𝑀𝑒 = Medium, and 𝐻𝑖 = High. Statistically significant
𝑝-values are bold. For example, in Table 8 in the column for 𝑑𝐿𝑜−𝐻𝑖 and row for “Reading Ease,” and “1” in topic familiarity we
can interpret the result as participants with a 1 topic familiarity rated the Low complexity, on average, 1.490 points higher for
reading ease (out of 5) compared to the High complexity when controlling for participant and paper.
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 1.385 <0.0001 1.645 <0.0001 0.260 0.120

2 0.310 0.274 0.660 0.024 0.350 0.274

3 0.392 0.101 0.321 0.161 -0.071 0.683

4 0.057 1.0 -0.045 1.0 -0.102 1.0

5 0.216 1.0 0.093 1.0 -0.122 1.0

All 0.472 <0.0001 0.535 <0.0001 0.063 0.455

Understanding

1 0.836 <0.0001 1.103 <0.0001 0.267 0.110

2 0.369 0.267 0.630 0.035 0.262 0.269

3 0.035 0.850 0.223 0.678 0.188 0.678

4 0.030 1.0 -0.077 1.0 -0.107 1.0

5 0.127 0.702 -0.266 0.702 -0.394 0.514

All 0.279 0.004 0.323 0.001 0.043 0.622

Interest

1 0.590 0.001 0.909 <0.0001 0.319 0.055

2 0.134 1.0 0.125 1.0 -0.009 1.0

3 -0.047 1.0 -0.064 1.0 -0.018 1.0

4 -0.004 1.0 -0.009 1.0 -0.006 1.0

5 0.251 1.0 0.052 1.0 -0.199 1.0

All 0.185 0.077 0.202 0.077 0.017 0.818

Value

1 0.069 0.674 0.407 0.031 0.339 0.079

2 -0.220 0.970 0.009 0.970 0.229 0.970

3 -0.173 1.0 -0.161 1.0 0.012 1.0

4 0.151 0.665 -0.085 0.665 -0.236 0.427

5 0.270 0.616 -0.101 0.720 -0.371 0.570

All 0.020 1.0 0.014 1.0 -0.006 1.0

Skipped Sections

1 0.083 1.0 -0.058 1.0 -0.142 1.0

2 -0.333 0.645 -0.143 0.924 0.190 0.924

3 0.100 1.0 -0.006 1.0 -0.106 1.0

4 0.367 0.123 0.277 0.234 -0.090 0.631

5 0.235 0.424 0.900 0.011 0.665 0.066

All 0.090 0.553 0.194 0.138 0.103 0.553

Article Requests

1 0.095 0.299 0.057 0.603 -0.038 0.603

2 0.214 0.036 0.001 0.991 -0.213 0.036

3 0.001 1.0 -0.046 1.0 -0.047 1.0

4 0.048 1.0 0.006 1.0 -0.042 1.0

5 0.069 1.0 0.042 1.0 -0.026 1.0

All 0.085 0.015 0.012 0.699 -0.073 0.035

Table 9: Study 2 with machine-generated summaries and no restriction on information content. See Table 8 for examples of
pairwise comparison interpretation.
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Familiarity 𝑑𝐿𝑜−𝑀𝑒 𝑝 𝑑𝐿𝑜−𝐻𝑖 𝑝 𝑑𝑀𝑒−𝐻𝑖 𝑝

Reading Ease

1 0.149 0.260 0.362 0.019 0.213 0.182

2 0.340 0.165 0.669 0.002 0.330 0.165

3 -0.134 1.0 -0.075 1.0 0.059 1.0

4 0.235 1.0 0.201 1.0 -0.034 1.0

5 0.319 1.0 -0.327 1.0 -0.646 1.0

All 0.182 1.0 0.166 1.0 -0.016 1.0

Understanding

1 0.186 0.147 0.420 0.003 0.234 0.111

2 0.033 1.0 0.174 1.0 0.141 1.0

3 -0.169 1.0 -0.062 1.0 0.107 1.0

4 0.298 0.859 0.523 0.527 0.225 0.859

5 -0.228 1.0 -0.456 1.0 -0.228 1.0

All 0.024 1.0 0.120 1.0 0.096 1.0

Interest

1 -0.018 0.902 0.295 0.091 0.313 0.080

2 0.141 0.777 0.342 0.373 0.201 0.777

3 -0.291 0.613 -0.173 0.853 0.117 0.853

4 -0.162 1.0 0.103 1.0 0.265 1.0

5 0.834 1.0 0.383 1.0 -0.450 1.0

All 0.101 1.0 0.190 1.0 0.089 1.0

Value

1 -0.014 0.922 0.213 0.269 0.226 0.269

2 -0.025 1.0 0.165 1.0 0.190 1.0

3 -0.380 0.180 0.037 0.856 0.417 0.180

4 0.494 0.454 0.870 0.116 0.376 0.454

5 2.245 0.177 2.385 0.200 0.139 0.906

All 0.464 0.139 0.734 0.051 0.270 0.284

Skipped Sections

1 0.023 1.0 0.110 1.0 0.087 1.0

2 -0.062 1.0 -0.015 1.0 0.047 1.0

3 -0.583 0.004 -0.110 0.529 0.472 0.026
4 0.167 1.0 0.074 1.0 -0.093 1.0

5 -0.055 1.0 -0.203 1.0 -0.148 1.0

All -0.102 1.0 -0.029 1.0 0.073 1.0

Article Requests

1 0.108 0.023 0.110 0.023 0.002 0.963

2 -0.015 0.805 -0.079 0.618 -0.064 0.652

3 0.101 0.347 0.082 0.352 -0.018 0.783

4 -0.135 0.683 -0.000 1.0 0.135 0.683

5 -0.100 1.0 0.039 1.0 0.138 1.0

All -0.008 1.0 0.030 1.0 0.039 1.0

Table 10: Study 3 with machine-generated summaries and restriction on information content. See Table 8 for examples of
pairwise comparison interpretation.
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